7,973 research outputs found
The effect of magnetic stimulation on potential rhythm of cerebral cortex
An approach using magnetic stimulation to modulate the electromagnetic potential rhythm of the cerebral cortex to induce sleep is proposed. Animal experiments were designed and carried out to examine this approach. The results showed that, in comparison with a control group, magnetic stimulation can influence and modulate the activities of brain potentials, and consequently promote the efficiency of the sleep process (p<0.01).published_or_final_versio
Two-loop Sudakov form factor in ABJM
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios
Tantalizing hints of the Higgs boson of mass around 125 GeV have been
reported at the LHC. We explore the MSSM parameter space in which the 125 GeV
state is identified as the heavier of the CP even Higgs bosons, and study two
scenarios where the two photon production rate can be significantly larger than
the standard model (SM). In one scenario, is
enhanced by a light stau contribution, while the () rate
stays around the SM rate. In the other scenario, is
suppressed and not only the but also the
() rates should be enhanced. The rate can be
significantly larger or smaller than the SM rate in both scenarios. Other
common features of the scenarios include top quark decays into charged Higgs
boson, single and pair production of all Higgs bosons in collisions at
GeV.Comment: 20 pages, 5 figures, accepted version for publication in JHE
NLO QCD Corrections to -to-Charmonium Form Factors
The meson to S-wave Charmonia transition form factors are
calculated in next-to-leading order(NLO) accuracy of Quantum
Chromodynamics(QCD). Our results indicate that the higher order corrections to
these form factors are remarkable, and hence are important to the
phenomenological study of the corresponding processes. For the convenience of
comparison and use, the relevant expressions in asymptotic form at the limit of
for the radiative corrections are presented
Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability
This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe
Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure
The spin-orbit interaction affects the electronic structure of solids in
various ways. Topological insulators are one example where the spin-orbit
interaction leads the bulk bands to have a non-trivial topology, observable as
gapless surface or edge states. Another example is the Rashba effect, which
lifts the electron-spin degeneracy as a consequence of spin-orbit interaction
under broken inversion symmetry. It is of particular importance to know how
these two effects, i.e. the non-trivial topology of electronic states and
Rashba spin splitting, interplay with each other. Here we show, through
sophisticated first-principles calculations, that BiTeI, a giant bulk Rashba
semiconductor, turns into a topological insulator under a reasonable pressure.
This material is shown to exhibit several unique features such as, a highly
pressure-tunable giant Rashba spin splitting, an unusual pressure-induced
quantum phase transition, and more importantly the formation of strikingly
different Dirac surface states at opposite sides of the material.Comment: 5 figures are include
Revealing the molecular signatures of host-pathogen interactions.
Advances in sequencing technology and genome-wide association studies are now revealing the complex interactions between hosts and pathogen through genomic variation signatures, which arise from evolutionary co-existence
Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model
We calculate the relic abundance of thermally produced neutralino cold dark
matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over
GUT scale parameters reveals that models with a bino-like neutralino typically
give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1
and 4 orders of magnitude higher than the measured value. Models with higgsino
or wino cold dark matter can yield the correct relic density, but mainly for
neutralino masses around 700-1300 GeV. Models with mixed bino-wino or
bino-higgsino CDM, or models with dominant co-annihilation or A-resonance
annihilation can yield the correct abundance, but such cases are extremely hard
to generate using a general scan over GUT scale parameters; this is indicative
of high fine-tuning of the relic abundance in these cases. Requiring that
m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a
minimal probably dip in parameter space at the measured CDM abundance. For
comparison, we also scan over mSUGRA space with four free parameters. Finally,
we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark
matter. In this case, the relic abundance agrees more naturally with the
measured value. In light of our cumulative results, we conclude that future
axion searches should probe much more broadly in axion mass, and deeper into
the axion coupling.Comment: 23 pages including 17 .eps figure
Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects for the LHC
We examine the supersymmetry phenomenology of a novel scenario of
supersymmetry (SUSY) breaking which we call Gaugino Anomaly Mediation, or
inoAMSB. This is suggested by recent work on the phenomenology of flux
compactified type IIB string theory. The essential features of this scenario
are that the gaugino masses are of the anomaly-mediated SUSY breaking (AMSB)
form, while scalar and trilinear soft SUSY breaking terms are highly
suppressed. Renormalization group effects yield an allowable sparticle mass
spectrum, while at the same time avoiding charged LSPs; the latter are common
in models with negligible soft scalar masses, such as no-scale or gaugino
mediation models. Since scalar and trilinear soft terms are highly suppressed,
the SUSY induced flavor and CP-violating processes are also suppressed. The
lightest SUSY particle is the neutral wino, while the heaviest is the gluino.
In this model, there should be a strong multi-jet +etmiss signal from squark
pair production at the LHC. We find a 100 fb^{-1} reach of LHC out to
m_{3/2}\sim 118 TeV, corresponding to a gluino mass of \sim 2.6 TeV. A double
mass edge from the opposite-sign/same flavor dilepton invariant mass
distribution should be visible at LHC; this, along with the presence of short--
but visible-- highly ionizing tracks from quasi-stable charginos, should
provide a smoking gun signature for inoAMSB.Comment: 30 pages including 14 .eps figure
Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T
We examine the prospects for testing SO(10) Yukawa-unified supersymmetric
models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming
integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the
Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically
predicts light gluinos and heavy squarks, with an inverted scalar mass
hierarchy. We hence expect large rates for gluino pair production followed by
decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of
integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV
even if missing transverse energy, E_T^miss, is not a viable cut variable, by
examining the multi-b-jet final state. A corroborating signal should stand out
in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3
model will require higher integrated luminosity to yield a signal in the OS
dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1
of data, if a corresponding search in the multi-b+ E_T^miss channel is
performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus
a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified
SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for
Yukawa-unified SUSY should be enough to either claim a discovery of the gluino,
or to very nearly rule out this class of models, since higher values of
m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure
- …
