33 research outputs found
Assessing the experience of using synthetic cannabinoids by means of interpretative phenomenological analysis
BACKGROUND: New psychoactive substances (NPS) have been increasingly consumed by people who use drugs in recent years, which pose a new challenge for treatment services. One of the largest groups of NPS is synthetic cannabinoids (SCs), which are intended as a replacement to cannabis. While there is an increasing body of research on the motivation and the effects associated with SC use, little is known about the subjective interpretation of SC use by the people who use drugs themselves. The aim of this study was to examine the experiences and personal interpretations of SC use of users who were heavily dependent on SC and are in treatment. METHODS: A qualitative research method was applied in order to explore unknown and personal aspects of SC use. Semi-structured interviews were conducted with six participants who had problematic SC use and entered treatment. The research was conducted in Hungary in 2015. We analyzed data using interpretative phenomenological analysis (IPA). RESULTS: Participants perceived SCs to be unpredictable: their initial positive experiences quickly turned negative. They also reported that SCs took over their lives both interpersonally and intrapersonally: the drug took their old friends away, and while initially it gave them new ones, in the end it not only made them asocial but the drug became their only friend, it hijacked their personalities and made them addicted. CONCLUSIONS: Participants experienced rapid development of effects and they had difficulties interpreting or integrating these experiences. The rapid alteration of effects and experiences may explain the severe psychopathological symptoms, which may be important information for harm reduction and treatment services. Since, these experiences are mostly unknown and unpredictable for people who use SCs, a forum where they could share their experiences could have a harm reducing role. For a harm reduction point of view of SCs, which are underrepresented in literature, it is important to emphasize the impossibility of knowing the quantity, purity, or even the number of different SC compounds in a particular SC product. Our study findings suggest that despite the adverse effects, including a rapid turn of experiences to negative, rapid development of addiction and withdrawal symptoms of SCs, participants continued using the drug because this drug was mostly available and cheap. Therefore, a harm reduction approach would be to make available and legal certain drugs that have less adverse effects and could cause less serious dependence and withdrawal symptoms, with controlled production and distribution (similarly to cannabis legalization in the Netherlands)
Acute myocardial infarction, associated with the use of a synthetic adamantyl-cannabinoid: a case report
BACKGROUND: “Legal highs” are novel psychoactive substances that have evaded statutory control. Synthetic cannabinoid compounds with adamantane moieties have recently been identified, which have high potency at target receptors and are undetectable on conventional toxicology testing. However, little is known about any harmful effects, and their potential to cause serious ill health. We describe a case of myocardial infarction following the use of this class of drug. CASE PRESENTATION: We report the case of a 39-year-old man admitted after an out-of-hospital cardiac arrest, in whom ECG and elevated cardiac enzymes confirmed ST-elevation myocardial infarction. Normal coronary perfusion was restored after thrombectomy and coronary artery stenting. In the hours preceding his admission, the patient is known to have consumed the legal high product “Black Mamba”. Subsequent urine testing confirmed the presence of an adamantyl-group synthetic cannabinoid, whilst cannabis, cocaine, amphetamines and other drugs of abuse were not detected. CONCLUSION: The use of legal highs is being increasingly recognised, but the chemical compositions and physiological effects of these drugs are poorly characterised and are continually changing. Synthetic cannabinoids, rarely identified on toxicological testing, can be linked to serious adverse cardiovascular events. This case highlights the importance of testing for novel psychoactive compounds, and recognising their potential to cause life-threatening conditions
Frequency of Synthetic Cannabinoid Use and Its Relationship with Socio-Demographic Characteristics and Treatment Outcomes in Alcohol-and Substance-Dependent Inpatients: A retrospective study
Strategies to distinguish new synthetic cannabinoid FUBIMINA (BIM-2201) intake from its isomer THJ-2201: metabolism of FUBIMINA in human hepatocytes
Since 2013, a new drugs-of-abuse trend attempts to bypass drug legislation by marketing isomers of scheduled synthetic cannabinoids (SCs), e.g., FUBIMINA (BIM-2201) and THJ-2201. It is much more challenging to confirm a specific isomer’s intake and distinguish it from its structural analog because the isomers and their major metabolites usually have identical molecular weights and display the same product ions. Here, we investigated isomers FUBIMINA and THJ-2201 and propose strategies to distinguish their consumption. THJ-2201 was scheduled in the US, Japan, and Europe; however, FUBIMINA is easily available on the Internet. We previously investigated THJ-2201 metabolism in human hepatocytes, but human FUBIMINA metabolism is unknown. We aim to characterize FUBIMINA metabolism in human hepatocytes, recommend optimal metabolites to confirm its consumption, and propose strategies to distinguish between intakes of FUBIMINA and THJ-2201. FUBIMINA (10 μM) was incubated in human hepatocytes for 3 h, and metabolites were characterized with high-resolution mass spectrometry (HR-MS). We identified 35 metabolites generated by oxidative defluorination, further carboxylation, hydroxylation, dihydrodiol formation, glucuronidation, and their combinations. We recommend 5′-OH-BIM-018 (M34), BIM-018 pentanoic acid (M33), and BIM-018 pentanoic acid dihydrodiol (M7) as FUBIMINA specific metabolites. THJ-2201 produced specific metabolite markers 5′-OH-THJ-018 (F26), THJ-018 pentanoic acid (F25), and hydroxylated THJ-2201 (F13). Optimized chromatographic conditions to achieve different retention times and careful selection of specific product ion spectra enabled differentiation of isomeric metabolites, in this case FUBIMINA from THJ-2201. Our HR-MS approach should be applicable for differentiating future isomeric SCs, which is especially important when different isomers have different legal status
In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201)
In 2014, NM-2201 (CBL-2201), a novel synthetic cannabinoid (SC), was detected by scientists at Russian and US laboratories. It has been already added to the list of scheduled drugs in Japan, Sweden and Germany. Unfortunately, no human metabolism data are currently available, which makes it challenging to confirm its intake, especially given that all SCs investigated thus far have been found to be extensively metabolized. The present study aims to recommend appropriate marker metabolites by investigating NM-2201 metabolism in human hepatocytes, and to confirm the results in authentic human urine specimens. For the metabolic stability assay, 1 µM NM-2201 was incubated in human liver microsomes (HLMs) for up to 1 h; for metabolite profiling, 10 µM of NM-2201 was incubated in human hepatocytes for 3 h. Two authentic urine specimens from NM-2201-positive cases were subjected to β-glucuronidase hydrolysis prior to analysis. The identification of metabolites in hepatocyte samples and urine specimens was achieved with high-resolution mass spectrometry via information-dependent acquisition. NM-2201 was quickly metabolized in HLMs, with an 8.0-min half-life. In human hepatocyte incubation samples, a total of 13 NM-2201 metabolites were identified, generated mainly from ester hydrolysis and further hydroxylation, oxidative defluorination and subsequent glucuronidation. M13 (5-fluoro PB-22 3-carboxyindole) was found to be the major metabolite. In the urine specimens, the parent drug NM-2201 was not detected; M13 was the predominant metabolite after β-glucuronidase hydrolysis. Therefore, based on the results of our study, we recommend M13 as a suitable urinary marker metabolite for confirming NM-2201 and/or 5F-PB-22 intake
