124 research outputs found

    Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure.

    Get PDF
    BackgroundIntra-amniotic Candida albicans (C. Albicans) infection is associated with preterm birth and high morbidity and mortality rates. Survivors are prone to adverse neurodevelopmental outcomes. The mechanisms leading to these adverse neonatal brain outcomes remain largely unknown. To better understand the mechanisms underlying C. albicans-induced fetal brain injury, we studied immunological responses and structural changes of the fetal brain in a well-established translational ovine model of intra-amniotic C. albicans infection. In addition, we tested whether these potential adverse outcomes of the fetal brain were improved in utero by antifungal treatment with fluconazole.MethodsPregnant ewes received an intra-amniotic injection of 10(7) colony-forming units C. albicans or saline (controls) at 3 or 5 days before preterm delivery at 0.8 of gestation (term ~ 150 days). Fetal intra-amniotic/intra-peritoneal injections of fluconazole or saline (controls) were administered 2 days after C. albicans exposure. Post mortem analyses for fungal burden, peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed to determine the effects of intra-amniotic C. albicans and fluconazole treatment.ResultsIntra-amniotic exposure to C. albicans caused a severe systemic inflammatory response, illustrated by a robust increase of plasma interleukin-6 concentrations. Cerebrospinal fluid cultures were positive for C. albicans in the majority of the 3-day C. albicans-exposed animals whereas no positive cultures were present in the 5-day C. albicans-exposed and fluconazole-treated animals. Although C. albicans was not detected in the brain parenchyma, a neuroinflammatory response in the hippocampus and white matter was seen which was characterized by increased microglial and astrocyte activation. These neuroinflammatory changes were accompanied by structural white matter injury. Intra-amniotic fluconazole reduced fetal mortality but did not attenuate neuroinflammation and white matter injury.ConclusionsIntra-amniotic C. albicans exposure provoked acute systemic and neuroinflammatory responses with concomitant white matter injury. Fluconazole treatment prevented systemic inflammation without attenuating cerebral inflammation and injury

    Counting and effective rigidity in algebra and geometry

    Full text link
    The purpose of this article is to produce effective versions of some rigidity results in algebra and geometry. On the geometric side, we focus on the spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic hyperbolic 2-manifolds (resp., 3-manifolds). By work of Reid, this spectrum determines the commensurability class of the 2-manifold (resp., 3-manifold). We establish effective versions of these rigidity results by ensuring that, for two incommensurable arithmetic manifolds of bounded volume, the length sets (resp., the complex length sets) must disagree for a length that can be explicitly bounded as a function of volume. We also prove an effective version of a similar rigidity result established by the second author with Reid on a surface analog of the length spectrum for hyperbolic 3-manifolds. These effective results have corresponding algebraic analogs involving maximal subfields and quaternion subalgebras of quaternion algebras. To prove these effective rigidity results, we establish results on the asymptotic behavior of certain algebraic and geometric counting functions which are of independent interest.Comment: v.2, 39 pages. To appear in Invent. Mat

    Reconstructive periodontal therapy with simultaneous ridge augmentation. A clinical and histological case series report

    Get PDF
    Treatment of intrabony periodontal defects with a combination of a natural bone mineral (NBM) and guided tissue regeneration (GTR) has been shown to promote periodontal regeneration in intrabony defects. In certain clinical situations, the teeth presenting intrabony defects are located at close vicinity of the resorbed alveolar ridge. In these particular cases, it is of clinical interest to simultaneously reconstruct both the intrabony periodontal defect and the resorbed alveolar ridge, thus allowing insertion of endosseous dental implants. The aim of the present study was to present the clinical and histological results obtained with a new surgical technique designed to simultaneously reconstruct the intrabony defect and the adjacently located resorbed alveolar ridge. Eight patients with chronic advanced periodontitis displaying intrabony defects located in the close vicinity of resorbed alveolar ridges were consecutively enrolled in the study. After local anesthesia, mucoperiosteal flaps were raised, the granulation tissue removed, and the roots meticulously scaled and planed. A subepithelial connective tissue graft was harvested from the palate and sutured to the oral flap. The intrabony defect and the adjacent alveolar ridge were filled with a NBM and subsequently covered with a bioresorbable collagen membrane (GTR). At 11–20 months (mean, 13.9 ± 3.9 months) after surgery, implants were placed, core biopsies retrieved, and histologically evaluated. Mean pocket depth reduction measured 3.8 ± 1.7 mm and mean clinical attachment level gain 4.3 ± 2.2 mm, respectively. Reentry revealed in all cases a complete fill of the intrabony component and a mean additional vertical hard tissue gain of 1.8 ± 1.8 mm. The histologic evaluation indicated that most NBM particles were surrounded by bone. Mean new bone and mean graft area measured 17.8 ± 2.8% and 32.1 ± 8.3%, respectively. Within their limits, the present findings indicate that the described surgical approach may be successfully used in certain clinical cases to simultaneously treat intrabony defects and to reconstruct the resorbed alveolar ridge

    Predictive Genes in Adjacent Normal Tissue Are Preferentially Altered by sCNV during Tumorigenesis in Liver Cancer and May Rate Limiting

    Get PDF
    Background: In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN) and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of tumorigenesis and disease progression remains unclear. Methodology/Principal Findings: Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy number variation and survival using ~250 AN and TU samples representing, respectively, the pre-cancer state, and the result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and genes differentially correlated between AN and TU. Conclusions/Significance: This suggests that the process of tumor evolution involves rate-limiting steps related to the background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be a causal driver of tumor evolution in HCC and perhaps many solid tumor types. © 2011 Lamb et al.published_or_final_versio

    Prognostic impact of multidrug resistance gene expression on the management of breast cancer in the context of adjuvant therapy based on a series of 171 patients

    Get PDF
    Study of the prognostic impact of multidrug resistance gene expression in the management of breast cancer in the context of adjuvant therapy. This study involved 171 patients treated by surgery, adjuvant chemotherapy±radiotherapy±hormonal therapy (mean follow-up: 55 months). We studied the expression of multidrug resistance gene 1 (MDR1), multidrug resistance-associated protein (MRP1), and glutathione-S-transferase P1 (GSTP1) using a standardised, semiquantitative rt–PCR method performed on frozen samples of breast cancer tissue. Patients were classified as presenting low or high levels of expression of these three genes. rt-PCR values were correlated with T stage, N stage, Scarff–Bloom–Richardson (SBR) grade, age and hormonal status. The impact of gene expression levels on 5-year disease-free survival (DFS) and overall survival (OS) was studied by univariate and multivariate Cox analysis. No statistically significant correlation was demonstrated between MDR1, MRP1 and GSTP1 expressions. On univariate analysis, DFS was significantly decreased in a context of low GSTP1 expression (P=0.0005) and high SBR grade (P=0.003), size ⩾5 cm (P=0.038), high T stage (P=0.013), presence of intravascular embolus (P=0.034), and >3 N+ (P=0.05). On multivariate analysis, GSTP1 expression and the presence of ER remained independent prognostic factors for DFS. GSTP1 expression did not affect OS. The levels of MDR1 and MRP1 expression had no significant influence on DFS or OS. GSTP1 expression can be considered to be an independent prognostic factor for DFS in patients receiving adjuvant chemotherapy for breast cancer
    corecore