7 research outputs found
Impact of protein, lipid and carbohydrate on the headspace delivery of volatile compounds from hydrating powders
The release of volatile compounds, such as aroma, from a food material during hydration is of wide relevance to the food industry. To this end, dry powders of varying chemical composition were hydrated in a controlled system to investigate the impact of varying composition (protein, lipid and carbohydrate) on the delivery rate of volatile compounds to the headspace. Additional lipid and carbohydrate reduced the concentration of volatile compounds in the headspace and accelerated their rate of delivery to the headspace. Protein had no measurable impact. Of the volatile compounds measured, 2,3 butanedione and acetaldehyde were shown to be released slowly into the headspace, and pyrrol, methyl acetate and pyridine were released rapidly; this differential release rate was strongly correlated with hydrophobicity and would indicate that during hydration there is a temporal dimension to the relative abundance of volatile compounds in the headspace
Flavor Perception in Biscuits; Correlating Sensory Properties with Composition, Aroma Release, and Texture
Survival and Metabolic Activity of Microencapsulated Bifidobacterium longum in Stirred Yogurt
Genotoxic and oxidative damage potentials in human lymphocytes after exposure to terpinolene in vitro
Terpinolene (TPO) is a monocyclic monoterpene found in the essential oils of various fir and pine species. Recent reports indicated that several monoterpenes could exhibit antioxidant effects in both human and animal experimental models. However, so far, the nature and/or biological roles of TPO have not been elucidated in human models yet. The aim of this study was to investigate the genetic, oxidative and cytotoxic effects of TPO in cultured human blood cells (n = 5) for the first time. Human blood cells were treated with TPO (0–200 mg/L) for 24 and 48 h, and then cytotoxicity was detected by lactate dehydrogenase (LDH) release and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay, while DNA damage was also analyzed by micronucleus assay, sister chromatid exchanges assay and 8-oxo-2-deoxyguanosine (8-OH-dG) level. In addition, biochemical parameters [total antioxidant capacity (TAC) and total oxidative stress (TOS)] were examined to determine oxidative effects. The results of LDH and MTT assays showed that TPO (at concentrations greater than 100 mg/L) decreased cell viability. In our in vitro test systems, it was observed that TPO had no genotoxicity on human lymphocytes. Again, TPO (at 10, 25, 50 and 75 mg/L) treatment caused statistically important (p < 0.05) increases of TAC levels in human lymphocytes without changing TOS levels. In conclusion, TPO can be a new resource of therapeutics as recognized in this study with its non-genotoxic and antioxidant features
