14 research outputs found
Interdisciplinary collaborations in the creation of digital dance and performance: A critical examination
Crystal Structures of T. b. rhodesiense Adenosine Kinase Complexed with Inhibitor and Activator: Implications for Catalysis and Hyperactivation
Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) and its derivatives exhibit specific antitrypanosomal activity toward T. b. rhodesiense, the causative agent of the acute form of HAT. We found that compound 1 would target the parasite adenosine kinase (TbrAK), an important enzyme of the purine salvage pathway, by acting via hyperactivation of the enzyme. This represents a novel and hitherto unexplored strategy for the development of trypanocides. These findings prompted us to investigate the mechanism of action at the molecular level. The present study reports the first three-dimensional crystal structures of TbrAK in complex with the bisubstrate inhibitor AP5A, and in complex with the activator (compound 1). The subsequent structural analysis sheds light on substrate and activator binding, and gives insight into the possible mechanism leading to hyperactivation. Further structure-activity relationships in terms of TbrAK activation properties support the observed binding mode of compound 1 in the crystal structure and may open the field for subsequent optimization of this compound series
α-Tocopheryl succinate and TRAIL selectively synergise in induction of apoptosis in human malignant mesothelioma cells
Malignant mesothelioma (MM) is a fatal type of neoplasia with poor therapeutic prognosis, largely due to resistance to apoptosis. We investigated the apoptotic effect of alpha-tocopheryl succinate (alpha-TOS), a strong proapoptotic agent, in combination with the immunological apoptogen TNF-related apoptosis-inducing ligand (TRAIL) on both MM and nonmalignant mesothelial cells, since MM cells show low susceptibility to the clinically intriguing TRAIL. All MM cell lines tested were sensitive to alpha-TOS-induced apoptosis, and exerted high sensitivity to TRAIL in the presence of subapoptotic doses of the vitamin E analogue. Neither TRAIL or alpha-TOS alone or in combination caused apoptosis in nonmalignant mesothelial cells. Isobologram analysis of the cytotoxicity assays revealed a synergistic interaction between the two agents in MM cells and their antagonistic effect in nonmalignant mesothelial cells. TRAIL-induced apoptosis and its augmentation by alpha-TOS were inhibited by the caspase-8 inhibitor Z-IETD-FMK and the pan-caspase inhibitor Z-VAD-FMK. Activation of caspase-8 was required to induce apoptosis, which was amplified by alpha-TOS via cytochrome c release following Bid cleavage, with ensuing activation of caspase-9. Enhancement of TRAIL-induced apoptosis in MM cells by alpha-TOS was also associated with upregulation of the TRAIL cognate death receptors DR4 and DR5. Our results show that alpha-TOS and TRAIL act in synergism to kill MM cells via mitochondrial pathway, and are nontoxic to nonmalignant mesothelial cells. These findings are indicative of a novel strategy for treatment of thus far fatal MM
Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts
Dengue virus (DENV) represents a major disease burden in tropical and subtropical regions of the world, and has shown an increase in the number of cases in recent years. DENV is transmitted to humans through the bite of an infected mosquito, typically Aedes aegypti, after which it begins the infection and replication lifecycle within human cells. To perform the molecular functions required for invasion, replication, and spread of the virus, proteins encoded by DENV must interact with and alter the behavior of protein networks in both of these hosts. In this work, we used a computational method based on protein structures to predict interactions between DENV and its human and insect hosts. We predict numerous interactions, with many involved in known cell death, stress, and immune system pathways. Further investigation of these predicted protein-protein interactions should provide targets to combat the clinical manifestations of this disease in humans as well as points of intervention focused within the mosquito vector
Hormesis is induced in the red flour beetle Tribolium castaneum through ingestion of charred toast
Analytical Methods Applied to Assess the Effects of Gamma Irradiation on Color, Chemical Composition and Antioxidant Activity of Ginkgo biloba L
Mouse Models that Target Removal or Overexpression of the Selenocysteine tRNA[Ser]Sec Gene to Elucidate the Role of Selenoproteins in Health and Development
Modulation of Phosphorylation of Tocopherol and Phosphatidylinositol by hTAP1/SEC14L2-Mediated Lipid Exchange
The vitamin E derivative, alpha-tocopheryl phosphate (αTP), is detectable in cultured cells, plasma and tissues in small amounts, suggesting the existence of enzyme(s) with α-tocopherol (αT) kinase activity. Here, we characterize the production of αTP from αT and [γ-32P]-ATP in primary human coronary artery smooth muscle cells (HCA-SMC) using separation by thin layer chromatography (TLC) and subsequent analysis by Ultra Performance Liquid Chromatography (UPLC). In addition to αT, although to a lower amount, also γT is phosphorylated. In THP-1 monocytes, γTP inhibits cell proliferation and reduces CD36 scavenger receptor expression more potently than αTP. Both αTP and γTP activate the promoter of the human vascular endothelial growth factor (VEGF) gene with similar potency, whereas αT and γT had no significant effect. The recombinant human tocopherol associated protein 1 (hTAP1, hSEC14L2) binds both αT and αTP and stimulates phosphorylation of αT possibly by facilitating its transport and presentation to a putative αT kinase. Recombinant hTAP1 reduces the in vitro activity of the phosphatidylinositol-3-kinase gamma (PI3Kγ) indicating the formation of a stalled/inactive hTAP1/PI3Kγ heterodimer. The addition of αT, βT, γT, δT or αTP differentially stimulates PI3Kγ, suggesting facilitated egress of sequestered PI from hTAP1 to the enzyme. It is suggested that the continuous competitive exchange of different lipophilic ligands in hTAPs with cell enzymes and membranes may be a way to make these lipophiles more accessible as substrates for enzymes and as components of specific membrane domains
