10 research outputs found

    Trypanosomiasis challenge estimation using the diminazene-aceturate (Berenil) index in Zebu in Gabon

    Get PDF
    A longitudinal study was conducted within a cattle ranch in Gabon to determine the diminazene aceturate (Berenil) index (DAI) in a group of Zebu, raised under low tsetse density; this measure providing an assessment of trypanosomiasis risk. The objective was to evaluate the trypanosomiasis pressure thus informing trypanosomiasis control methods and cattle management. Twenty female adult Zebu were monitored for 24 weeks during the dry season. Blood samples were collected on aweekly basis and subjected to parasitological and haematological analysis (n = 480), using the buffy-coat method and the packed cell volume value (PCV), respectively, infected animals were treated with a single intramuscular injection of diminazene aceturate (8 mg/kg). Twenty-nine single infectious events were recorded and a DAI of 1.45 was calculated. Two trypanosome species were identified: Trypanosoma congolense (96.2%) and Trypanosoma vivax (3.8%). The mean PCV value of the infected animals was lower (26.6) compared to non-infected animals (32.0). This study shows that DAI may be a useful tool to assess trypanosomiasis. However, this is a time-consumingmethod that may be improved by using randomly selected sentinel animals to adapt the chemoprophylactic schemes, hence decreasing the costs and the drug resistance risk

    Extrudate swell of linear and branched polyethylenes: ALE simulations and comparison with experiments

    No full text
    Extrudate swell is a common phenomenon observed in the polymer extrusion industry. Accurate prediction of the dimensions of an extrudate is important for appropriate design of dies for profile extrusion applications. Prediction of extrudate swell has been challenging due to (i) difficulties associated with accurate representation of the constitutive behavior of polymer melts, and (ii) difficulties associated with the simulation of free surfaces, which requires special techniques in the traditionally used Eulerian framework. In a previous work we had argued that an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation may have advantages in simulating free surface deformations such as in extrudate swell. In the present work we reinforce this argument by comparing our ALE simulations with experimental data on the extrudate swell of commercial grades of linear polyethylene (LLDPE) and branched polyethylene (LOPE). Rheological behavior of the polymers was characterized in shear and uniaxial extensional deformations, and the data was modeled using either the Phan-Thien Tanner (PTT) model or the eXtended Pom-Pom (XPP) model. Additionally, flow birefringence and pressure drop measurements were done using a 10:1 contraction-expansion (CE) slit geometry in a MultiPass Rheometer. Simulated pressure drop and contours of the principal stress difference were compared with experimental data and were found to match well. This provided an independent test for the accuracy of the ALE code and the constitutive equations for simulating a processing-like flow. The polymers were extruded from long (L/D=30) and short (L/D=10) capillaries dies at 190 degrees C. ALE simulations were performed for the same extrusion conditions and the simulated extrudate swell showed good agreement with the experimental data. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved

    Field testing of a lightweight, inexpensive, and customisable 3D-printed mosquito light trap in the UK

    Get PDF
    Mosquito surveillance is a fundamental component of planning and evaluating vector control programmes. However, logistical and cost barriers can hinder the implementation of surveillance, particularly in vector-borne disease-endemic areas and in outbreak scenarios in remote areas where the need is often most urgent. The increasing availability and reduced cost of 3D printing technology offers an innovative approach to overcoming these challenges. In this study, we assessed the field performance of a novel, lightweight 3D-printed mosquito light trap baited with carbon dioxide (CO2) in comparison with two gold-standard traps, the Centers for Disease Control and Prevention (CDC) light trap baited with CO2, and the BG Sentinel 2 trap with BG-Lure and CO2. Traps were run for 12 nights in a Latin square design at Rainham Marshes, Essex, UK in September 2018. The 3D-printed trap showed equivalent catch rates to the two commercially available traps. The 3D-printed trap designs are distributed free of charge in this article with the aim of assisting entomological field studies across the world

    A fidget spinner for the point-of-care diagnosis of urinary tract infection

    No full text
    The point-of-care detection of pathogens in biological samples in resource-limited settings should be inexpensive, rapid, portable, simple and accurate. Here, we describe a custom-made fidget spinner that rapidly concentrates pathogens in 1-ml samples of undiluted urine by more than 100-fold for the on-device colorimetric detection of bacterial load and pathogen identification. In Tiruchirappalli, India, the device enabled the on-site detection of infection with the naked eye within 50 min in urine samples from 39 patients suspected of having a urinary tract infection. We also show that, in 30 clinical samples of urinary tract infection, the device can be used to perform an antimicrobial susceptibility test for the antimicrobial drugs ciprofloxacin and cefazolin within 120 min. The fidget spinner could be used in low-resource settings as an inexpensive handheld point-of-care device for the rapid concentration and detection of pathogens in urine samples. A custom-made fidget spinner rapidly concentrates pathogens in 1-ml samples of undiluted urine by more than 100-fold for the on-device colorimetric detection of bacterial load and pathogen identification

    A materials-science perspective on tackling COVID-19

    No full text
    corecore