1,193 research outputs found

    Generalized N = 2 Super Landau Models

    Full text link
    We generalize previous results for the superplane Landau model to exhibit an explicit worldline N = 2 supersymmetry for an arbitrary magnetic field on any two-dimensional manifold. Starting from an off-shell N = 2 superfield formalism, we discuss the quantization procedure in the general case characterized by two independent potentials on the manifold and show that the relevant Hamiltonians are factorizable. In the restricted case when both the Gauss curvature and the magnetic field are constant over the manifold and, as a consequence, the underlying potentials are related, the Hamiltonians admit infinite series of factorization chains implying the integrability of the associated systems. We explicitly determine the spectrum and eigenvectors for the particular model with CP^1 as the bosonic manifold.Comment: 26 page

    TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.

    Get PDF
    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies

    A Regularized Graph Layout Framework for Dynamic Network Visualization

    Full text link
    Many real-world networks, including social and information networks, are dynamic structures that evolve over time. Such dynamic networks are typically visualized using a sequence of static graph layouts. In addition to providing a visual representation of the network structure at each time step, the sequence should preserve the mental map between layouts of consecutive time steps to allow a human to interpret the temporal evolution of the network. In this paper, we propose a framework for dynamic network visualization in the on-line setting where only present and past graph snapshots are available to create the present layout. The proposed framework creates regularized graph layouts by augmenting the cost function of a static graph layout algorithm with a grouping penalty, which discourages nodes from deviating too far from other nodes belonging to the same group, and a temporal penalty, which discourages large node movements between consecutive time steps. The penalties increase the stability of the layout sequence, thus preserving the mental map. We introduce two dynamic layout algorithms within the proposed framework, namely dynamic multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We apply these algorithms on several data sets to illustrate the importance of both grouping and temporal regularization for producing interpretable visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material (animations and MATLAB toolbox) available at http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201

    Algorithms: simultaneous error-correction and rooting for gene tree reconciliation and the gene duplication problem

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolutionary methods are increasingly challenged by the wealth of fast growing resources of genomic sequence information. Evolutionary events, like gene duplication, loss, and deep coalescence, account more then ever for incongruence between gene trees and the actual species tree. Gene tree reconciliation is addressing this fundamental problem by invoking the minimum number of gene duplication and losses that reconcile a rooted gene tree with a rooted species tree. However, the reconciliation process is highly sensitive to topological error or wrong rooting of the gene tree, a condition that is not met by most gene trees in practice. Thus, despite the promises of gene tree reconciliation, its applicability in practice is severely limited.</p> <p>Results</p> <p>We introduce the problem of reconciling unrooted and erroneous gene trees by simultaneously rooting and error-correcting them, and describe an efficient algorithm for this problem. Moreover, we introduce an error-corrected version of the gene duplication problem, a standard application of gene tree reconciliation. We introduce an effective heuristic for our error-corrected version of the gene duplication problem, given that the original version of this problem is NP-hard. Our experimental results suggest that our error-correcting approaches for unrooted input trees can significantly improve on the accuracy of gene tree reconciliation, and the species tree inference under the gene duplication problem. Furthermore, the efficiency of our algorithm for error-correcting reconciliation is capable of handling truly large-scale phylogenetic studies.</p> <p>Conclusions</p> <p>Our presented error-correction approach is a crucial step towards making gene tree reconciliation more robust, and thus to improve on the accuracy of applications that fundamentally rely on gene tree reconciliation, like the inference of gene-duplication supertrees.</p

    Improved adherence with once-daily versus twice-daily dosing of mometasone furoate administered via a dry powder inhaler: a randomized open-label study

    Get PDF
    Background Poor adherence with prescribed asthma medication is a major barrier to positive treatment outcomes. This study was designed to determine the effect of a once-daily administration of mometasone furoate administered via a dry powder inhaler (MF-DPI) on treatment adherence compared with a twice-daily administration. Methods This was a 12-week open-label study designed to mimic an actual clinical setting in patients ≥12 years old with mild-to-moderate persistent asthma. Patients were randomized to receive MF-DPI 400 μg once-daily in the evening or MF-DPI 200 μg twice-daily. Adherence was assessed primarily using the number of actual administered doses reported from the device counter divided by the number of scheduled doses. Self-reports were also used to determine adherence. Health-related quality of life, healthcare resource utilization, and days missed from work or school were also reported. Results 1233 patients were randomized. The mean adherence rates, as measured by the automatic dose counter, were significantly better (P < 0.001) with MF-DPI 400 μg once-daily in the evening (93.3%) than with MF-DPI 200 μg twice-daily (89.5%). Mean adherence rates based on self-reports were also significantly better (P < 0.001) with MF-DPI 400 μg QD PM (97.2%) than with MF-DPI 200 μg twice-daily (95.3%). Adherence rates were lower in adolescents (12-17 years old). Health-related quality of life improved by 20% in patients using MF-DPI once-daily in the evening and by 14% in patients using MF-DPI twice-daily. Very few (<8%) patients missed work/school. Conclusion Mean adherence rates were greater with a once-daily dosing regimen of MF-DPI than with a twice-daily dosing regimen. This trial was completed prior to the ISMJE requirements for trial registration

    Is it possible to diagnose the therapeutic adherence of patients with COPD in clinical practice? A cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Therapeutic adherence of patients with chronic obstructive pulmonary disease (COPD) is poor. It is therefore necessary to determine the magnitude of non-adherence to develop strategies to correct this behaviour. The purpose of this study was to analyse the diagnostic validity of indirect adherence methods.</p> <p>Methods</p> <p>Sample: 195 COPD patients undergoing scheduled inhaled treatment attending 5 Primary Care Centres of Malaga, Spain. Variables: Sociodemographic profile, illness data, spirometry, quality of life (St. George Respiratory Questionnaire: SGRQ), and inhaled medication counting (count of dose/pill or electronic monitoring) were collected. The patient's knowledge of COPD (Batalla test:BT),their attitude towards treatment (Morisky-Green test: MGT) and their self-reported therapeutic adherence (Haynes-Sackett test: HST) were used as methods of evaluating adherence. The follow-up consisted four visits over one year (the recruitment visit: V0; and after 1 month:V1; 6 months:V2; and 1 year:V3).</p> <p>Results</p> <p>The mean age was 69.59 (95% CI, 68.29-70.89) years old and 93.8% were male. Other findings included: 85.4% had a low educational level, 23.6% were smokers, 71.5% mild-moderate COPD stage with a FEV1 = 56.86 (SD = 18.85); exacerbations per year = 1.41(95% CI, 1-1.8). The total SGRQ score was 44.96 (95% CI, 42.46-47.46), showing a mild self-perceived impairment in health. The prevalence of adherence (dose/pill count) was 68.1% (95% CI, 60.9-75.3) at V1, 80% (95% CI, 73-87) at V2 and 84% (95% CI, 77.9) at V3. The MGT showed a specificity of 67.34% at V1, 76.19% at V2 and 69.62% at V3. The sensitivity was 53.33% at V1, 66.66% at V2 and 33.33% at V3.The BT showed a specificity of 55.1% at V1, 70.23% at V2 and 67.09% at V3. The sensitivity was 68.88% at V1, 71.43% at V2 and 46.66% at V3. Considering both tests together, the specificity was 86.73% at V1, 94.04% at V2 and 92.49% at V3 and the sensitivity was 37.77% at V1, 47.62% at V2 and 13.3% at V3.</p> <p>Conclusions</p> <p>The prevalence of treatment adherence changes over time. Indirect methods (dose/pill count and self-reported) can be useful to detect non-adherence in COPD patients. The combination of MGT and BT is the best approach to test self-reported adherence.</p

    Rotation Curves of Spiral Galaxies

    Get PDF
    Rotation curves of spiral galaxies are the major tool for determining the distribution of mass in spiral galaxies. They provide fundamental information for understanding the dynamics, evolution and formation of spiral galaxies. We describe various methods to derive rotation curves, and review the results obtained. We discuss the basic characteristics of observed rotation curves in relation to various galaxy properties, such as Hubble type, structure, activity, and environment.Comment: 40 pages, 6 gif figures; Ann. Rev. Astron. Astrophys. Vol. 39, p.137, 200

    Aggregated a-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons

    Get PDF
    α-Synuclein becomes misfolded and aggregated upon damage by various factors, for example, by reactive oxygen species. These aggregated forms have been proposed to have differential toxicities and their interaction with mitochondria may cause dysfunction within this organelle that contributes to the pathogenesis of Parkinson’s disease (PD). In particular, the association of α-synuclein with mitochondria occurs through interaction with mitochondrial complex I and importantly defects of this protein have been linked to the pathogenesis of PD. Therefore, we investigated the relationship between aggregated α-synuclein and mitochondrial dysfunction, and the consequences of this interaction on cell survival. To do this, we studied the effects of α-synuclein on cybrid cell lines harbouring mutations in either mitochondrial complex I or IV. We found that aggregated α-synuclein inhibited mitochondrial complex I in control and complex IV-deficient cells. However, when aggregated α-synuclein was applied to complex I-deficient cells, there was no additional inhibition of mitochondrial function or increase in cell death. This would suggest that as complex I-deficient cells have already adapted to their mitochondrial defect, the subsequent toxic effects of α-synuclein are reduced
    corecore