25 research outputs found

    Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks

    Get PDF
    During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair. © 2014 Nakajima et al

    Persistence of travel and leisure sector equity indices

    No full text
    Volatility persistence of travel and leisure sector equity indices and of some of its components is analyzed, and tests of whether persistence has changed over time are performed. Given the typical leading indicator behavior of financial variables, understanding and characterizing the properties of these indices may help shed light on the behavior of the tourism sector and of its resilience to crises. For the purpose of analysis, our sample is split into three subsamples according to the World tourism cycle: (i) from January 1996 to December 2002; (ii) from January 2003 to August 2007; and (iii) from September 2007 to July 2014. Results suggest the existence of long-memory dynamics driving series volatility, and that shocks to volatility tend to be more persistent during periods of turmoil and affect regions differently.info:eu-repo/semantics/publishedVersio

    Efficient T-cell receptor signaling requires a high-affinity interaction between the Gads C-SH3 domain and the SLP-76 RxxK motif

    No full text
    The relationship between the binding affinity and specificity of modular interaction domains is potentially important in determining biological signaling responses. In signaling from the T-cell receptor (TCR), the Gads C-terminal SH3 domain binds a core RxxK sequence motif in the SLP-76 scaffold. We show that residues surrounding this motif are largely optimized for binding the Gads C-SH3 domain resulting in a high-affinity interaction (K(D)=8–20 nM) that is essential for efficient TCR signaling in Jurkat T cells, since Gads-mediated signaling declines with decreasing affinity. Furthermore, the SLP-76 RxxK motif has evolved a very high specificity for the Gads C-SH3 domain. However, TCR signaling in Jurkat cells is tolerant of potential SLP-76 crossreactivity, provided that very high-affinity binding to the Gads C-SH3 domain is maintained. These data provide a quantitative argument that the affinity of the Gads C-SH3 domain for SLP-76 is physiologically important and suggest that the integrity of TCR signaling in vivo is sustained both by strong selection of SLP-76 for the Gads C-SH3 domain and by a capacity to buffer intrinsic crossreactivity
    corecore