43 research outputs found

    Emergent quantum confinement at topological insulator surfaces

    Full text link
    Bismuth-chalchogenides are model examples of three-dimensional topological insulators. Their ideal bulk-truncated surface hosts a single spin-helical surface state, which is the simplest possible surface electronic structure allowed by their non-trivial Z2\mathbb{Z}_2 topology. They are therefore widely regarded ideal templates to realize the predicted exotic phenomena and applications of this topological surface state. However, real surfaces of such compounds, even if kept in ultra-high vacuum, rapidly develop a much more complex electronic structure whose origin and properties have proved controversial. Here, we demonstrate that a conceptually simple model, implementing a semiconductor-like band bending in a parameter-free tight-binding supercell calculation, can quantitatively explain the entire measured hierarchy of electronic states. In combination with circular dichroism in angle-resolved photoemission (ARPES) experiments, we further uncover a rich three-dimensional spin texture of this surface electronic system, resulting from the non-trivial topology of the bulk band structure. Moreover, our study reveals how the full surface-bulk connectivity in topological insulators is modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high resolution version is available at http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd

    Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure

    Full text link
    The spin-orbit interaction affects the electronic structure of solids in various ways. Topological insulators are one example where the spin-orbit interaction leads the bulk bands to have a non-trivial topology, observable as gapless surface or edge states. Another example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin-orbit interaction under broken inversion symmetry. It is of particular importance to know how these two effects, i.e. the non-trivial topology of electronic states and Rashba spin splitting, interplay with each other. Here we show, through sophisticated first-principles calculations, that BiTeI, a giant bulk Rashba semiconductor, turns into a topological insulator under a reasonable pressure. This material is shown to exhibit several unique features such as, a highly pressure-tunable giant Rashba spin splitting, an unusual pressure-induced quantum phase transition, and more importantly the formation of strikingly different Dirac surface states at opposite sides of the material.Comment: 5 figures are include

    Zeeman-type spin splitting controlled by an electric field

    No full text
    Transition-metal dichalcogenides such as WSe2 and MoS2 have electronic band structures that are ideal for hosting many exotic spin–orbit phenomena. Here we investigate the possibility to generate and modulate a giant Zeeman-type spin polarization in WSe2 under an external electric field. By tuning the perpendicular electric field applied to the WSe2 channel with an electric-double-layer transistor, we observe a systematic crossover from weak localization to weak anti-localization in magnetotransport. Our optical reflection measurements also reveal an electrically tunable exciton splitting. Using first-principles calculations, we propose that these are probably due to the emergence of a merely out-of-plane and momentum-independent spin splitting at and in the vicinity of the vertices of the WSe2 Brillouin zone under electric field. The non-magnetic approach for creating such an intriguing spin splitting keeps the system time-reversally invariant, thereby suggesting a new method for manipulating the spin degrees of freedom of electrons
    corecore