173 research outputs found

    Canadians Redefining R&B: The Online Marketing of Drake, Justin Bieber, and Jessie Reyez

    Get PDF
    In a country that long failed to accept, include, and institutionalize R&B music as part of Canadian culture, musical artists Justin Bieber, Drake, and Jessie Reyez have successfully broken-down barriers by having successful careers as racially diverse Canadian R&B artists. This qualitative study surveys the literature on classifications of the R&B genre and of Canadian identities in popular media. The theoretical framework of discourse analysis is used to conduct a brief episodic history of Canadian R&B and to evaluate how the music genre “R&B,” is traditionally associated with people who have Black and American identities, and how a “Canadian” identity is traditionally associated with “white” and “folk” musical artists. I conclude that the ascription of racialized and nationalized identities is found to play a role in each artist\u27s respective inclusion, exclusion, and/or authentication vis a vis R&B. I evaluate how Bieber, Drake, and Reyez each articulate “R&B-ness” and “Canadian-ness” to represent multiple, yet equally Canadian national narratives through their Canadian R&B artist lifestyle brands. In exploring ideas of national identity, intersectionality, digital celebrity, branding, and marketing related to contemporary Canadian popular music genres, the dissertation seeks to answer the question: How have the careers of Justin Bieber, Drake, and Jessie Reyez reinforced, complicated, and/or challenged hegemonic understandings of both “Canadian-ness” and “R&B-ness”? Through textual analyses of their social media posts, brand partnerships, interviews, music videos, and music lyrics, the dissertation traces out how multicultural Canadian artists Bieber, Drake, and Reyez broke into the music industry as “digital stars” (Harvey, 2017) by using online communication strategies, alongside traditional industry practices (such as networking with music industry gatekeepers). A particular focus involves Drake’s, Bieber’s, and Reyez’s brand partnerships and social media strategies, between 2019 and 2022, when the COVID-19 pandemic accelerated the significance of online communications, and the Black Lives Matter movement encouraged changes to race-based music industry classifications. The dissertation includes insights from interviews conducted with 35 U.S. and Canadian marketing professionals and music industry executives in 2020. This study is applicable to explorations of how race, nationality, and music genre categories are classified, cultural branding, and contemporary marketing strategies

    DNA adducts in fish following an oil spill exposure

    Get PDF
    On 12 December 1999, one third of the load of the Erika tanker, amounting to about 10,000 t crude oil flowed into sea waters close to the French Atlantic Coast. This oil contained polycyclic aromatic compounds (PAC) that are known to be genotoxic. Genotoxic effects induce DNA adducts formation, which can thus be used as pollution biomarkers. Here, we assessed the genotoxic impact of the “Erika” oil spill by DNA adducts detection in the liver of immature fishes (Solea solea) from four locations of the French Brittany coasts. Two months after the spill, a high amount of DNA adducts was found in samples from all locations, amounting to 92–290 DNA adduct per 109 nucleotides. Then total DNA adduct levels decreased to reach about 50 adducts per 109 nucleotides nine months after the spill. In vitro experiments using human cell cultures and fish liver microsomes evidence the genotoxicity of the Erika fuel. They also prove the formation of reactive species able to create DNA adducts. Furthermore, in vitro and in vivo DNA adducts fingerprints are similar, thus confirming that DNA adducts are a result of the oil spill

    Locomotor hyperactivity in 14-3-3Zeta KO mice is associated with dopamine transporter dysfunction

    Get PDF
    Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric disorders. We recently identified 14-3-3ζ as an essential component of neurodevelopment and a central risk factor in the schizophrenia protein interaction network. Our analysis of 14-3-3ζ-deficient mice now shows that baseline hyperactivity of knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3ζ KO mice displayed enhanced locomotor hyperactivity induced by the DA releaser amphetamine. Consistent with 14-3-3ζ having a role in DA signalling, we found increased levels of DA in the striatum of 14-3-3ζ KO mice. Although 14-3-3ζ is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme, tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3ζ KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein levels of DA receptors D1–D5. Providing insight into the mechanisms by which 14-3-3ζ controls DAT stability, we found a physical association between 14-3-3ζ and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3ζ in DA neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related disorders.H Ramshaw, X Xu, EJ Jaehne, P McCarthy, Z Greenberg, E Saleh, B McClure, J Woodcock, S Kabbara, S Wiszniak, Ting-Yi Wang, C Parish, M van den Buuse, BT Baune, A Lopez and Q Schwar

    Early response to antibiotic treatment in European patients hospitalized with complicated skin and soft tissue infections: analysis of the REACH study

    Get PDF
    Background: The treatment of complicated skin and soft tissue infections (cSSTI) is challenging and many patients do not receive adequate first-line therapy. REACH (REtrospective Study to Assess the Clinical Management of Patients With Moderate-to-Severe cSSTI or Community-Acquired Pneumonia in the Hospital Setting) was a retrospective observational study of cSSTI patients in real-life settings in European hospitals. In this analysis, we review characteristics and outcomes of patients with an early response (<= 72 hours) compared with those without an early response to treatment. We also compare the results according to two differing definitions of early response, one of which (Definition 1) requires resolution of fever within 72 hours, in line with previous US FDA guidelines. Methods: Patients were adults hospitalized with cSSTIs 2010-2011 and requiring treatment with intravenous antibiotics. Clinical management, clinical outcomes and healthcare resource use were assessed using a descriptive analysis approach. Results: The analysis set included 600 patients, of which 363 showed early response with Definition 1 and 417 with Definition 2. Initial treatment modification was frequent, and highest in patients without early response (48.1% with Definition 1). Patients without early response were more likely to have diabetes than those with early response (31.6% vs. 22.9%,respectively) and to suffer from more severe disease (e.g. skin necrosis: 14.8% and 7.7%,respectively), to be infected with difficult-to-treat microorganisms and to have recurrent infections. Furthermore, patients without early response had a higher rate of adverse clinical outcomes (e.g. septic shock) and higher use of healthcare resources. The results obtained with the two definitions for early response were largely similar. Conclusions: This study highlights the significance of early evaluation of patients in hospitals, in potentially preventing prolonged use of inappropriate or ineffective antibacterial therapy

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Presence of Antibodies Against Coxiella burnetii and Risk of Spontaneous Abortion: A Nested Case-Control Study

    Get PDF
    BACKGROUND AND AIMS: Q fever is a bacterial zoonosis caused by infection with Coxiella burnetii. It is well established that Q fever causes fetal loss in small ruminants. The suspicion has been raised that pregnant women may also experience adverse pregnancy outcome when the infection is acquired or reactivated during pregnancy. The purpose of this study was to assess the potential association between serologic markers of infection with C. burnetii and spontaneous abortion. METHODS: A nested case-control study within the Danish National Birth Cohort, a cohort of 100,418 pregnancies recruited from 1996-2002. Women were recruited in first trimester of pregnancy and followed prospectively. Median gestational age at enrolment was 8 weeks (25 and 75 percentiles: 7 weeks; 10 weeks). During pregnancy, a blood sample was collected at gestational week 6-12 and stored in a bio bank. For this study, a case sample of 218 pregnancies was drawn randomly among the pregnancies in the cohort which ended with a miscarriage before 22 gestational weeks, and a reference group of 482 pregnancies was selected in a random fashion among all pregnancies in the cohort. From these pregnancies, serum samples were screened for antibodies against C. burnetii in a commercial enzyme-linked immunosorbent assay (ELISA). Samples that proved IgG or IgM antibody positive were subsequently confirmatory tested by an immunofluorescence (IFA) test. RESULTS: Among cases, 11 (5%) were C. burnetii positive in ELISA of which one was confirmed in the IFA assay compared to 29 (6%) ELISA positive and 3 IFA confirmed in the random sample. CONCLUSIONS: We found no evidence of a higher prevalence of C. burnetii antibodies in serum samples from women who later miscarried and the present study does not indicate a major association between Q fever infection and spontaneous abortion in humans. Very early first trimester abortions were, however, not included in the study

    Proteolysis of Human Thrombin Generates Novel Host Defense Peptides

    Get PDF
    The coagulation system is characterized by the sequential and highly localized activation of a series of serine proteases, culminating in the conversion of fibrinogen into fibrin, and formation of a fibrin clot. Here we show that C-terminal peptides of thrombin, a key enzyme in the coagulation cascade, constitute a novel class of host defense peptides, released upon proteolysis of thrombin in vitro, and detected in human wounds in vivo. Under physiological conditions, these peptides exert antimicrobial effects against Gram-positive and Gram-negative bacteria, mediated by membrane lysis, as well as immunomodulatory functions, by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, they are protective against P. aeruginosa sepsis, as well as lipopolysaccharide-induced shock. Moreover, the thrombin-derived peptides exhibit helical structures upon binding to lipopolysaccharide and can also permeabilize liposomes, features typical of “classical” helical antimicrobial peptides. These findings provide a novel link between the coagulation system and host-defense peptides, two fundamental biological systems activated in response to injury and microbial invasion

    Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIVmac239

    Get PDF
    Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV

    First-Principles Study of the Electronic and Magnetic Properties of Defects in Carbon Nanostructures

    Full text link
    Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp3^3-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the dd states of the metal atom and the defect levels associated with an unreconstructed D3h_{3h} carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 μB\mu_B is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.Comment: 40 pages, 17 Figures, 62 References; Chapter 2 in Topological Modelling of Nanostructures and Extended Systems (2013) - Springer, edited by A. R. Ashrafi, F. Cataldo, A. Iranmanesh, and O. Or

    Genome-Wide Data-Mining of Candidate Human Splice Translational Efficiency Polymorphisms (STEPs) and an Online Database

    Get PDF
    Variation in pre-mRNA splicing is common and in some cases caused by genetic variants in intronic splicing motifs. Recent studies into the insulin gene (INS) discovered a polymorphism in a 5' non-coding intron that influences the likelihood of intron retention in the final mRNA, extending the 5' untranslated region and maintaining protein quality. Retention was also associated with increased insulin levels, suggesting that such variants--splice translational efficiency polymorphisms (STEPs)--may relate to disease phenotypes through differential protein expression. We set out to explore the prevalence of STEPs in the human genome and validate this new category of protein quantitative trait loci (pQTL) using publicly available data.Gene transcript and variant data were collected and mined for candidate STEPs in motif regions. Sequences from transcripts containing potential STEPs were analysed for evidence of splice site recognition and an effect in expressed sequence tags (ESTs). 16 publicly released genome-wide association data sets of common diseases were searched for association to candidate polymorphisms with HapMap frequency data. Our study found 3324 candidate STEPs lying in motif sequences of 5' non-coding introns and further mining revealed 170 with transcript evidence of intron retention. 21 potential STEPs had EST evidence of intron retention or exon extension, as well as population frequency data for comparison.Results suggest that the insulin STEP was not a unique example and that many STEPs may occur genome-wide with potentially causal effects in complex disease. An online database of STEPs is freely accessible at http://dbstep.genes.org.uk/
    corecore