9 research outputs found

    Lasia spinosa Chemical Composition and Therapeutic Potential: A Literature-Based Review

    Get PDF
    Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: "Lasia spinosa,"then combined with "ethnopharmacological use,""phytochemistry,"and "pharmacological activity."This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.This work was supported by Comisi贸n Nacional de Investigaci贸n Cient铆fica y Tecnol贸gica (CONICYT) PIA/APOYO CCTE AFB170007. N.C.-M. acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)

    Ovarian cancer

    Get PDF
    Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies

    Mechanical function of vertebral body osteophytes, as revealed by experiments on cadaveric spines

    Get PDF
    Study Design. Mechanical testing of cadaveric spines. Objective. To determine whether vertebral body osteophytes act primarily to reduce compressive stress on the intervertebral discs, or to stabilize the spine in bending. Summary of Background Data. The mechanical significance of vertebral osteophytes is unclear. Methods. Thoracolumbar spines were obtained from cadavers, aged 51 to 92 years, with vertebral body osteophytes, mostly anterolateral. Twenty motion segments, from T5鈥揟6 to L3鈥揕4, were loaded in compression to 1.5 kN, and then in flexion, extension, and lateral bending to 10 to 25 Nm (depending on specimen size) with a compressive preload. Vertebral movements were tracked using an optical 2-dimensional MacReflex system. Tests were performed in random order, and were repeated after excision of all osteophytes. Osteophyte function was inferred from (a) changes in the force or moment resisted and (b) changes in tangent stiffness, measured at maximum displacement or rotation angle. Volumetric bone mineral density (BMD) was measured using dual photon x-ray absorptiometry and water immersion. Results were analyzed using repeated measures analysis of variance. Results. Resistance to compression was reduced by an average of 17% after osteophyte removal (P < 0.05), and resistance to bending moment in flexion, extension, and left and right lateral bending was reduced by 49%, 36%, 36%, and 35%, respectively (all P < 0.01). Changes in tangent stiffness were similar. Osteophyte removal increased the neutral zone in bending (P < 0.05) and, on average, reduced motion segment BMD by 7% to 9%. Results were insensitive to applied loads and moments, but several changes were proportional to osteophyte size. Conclusion. Vertebral body osteophytes resist bending movements more than compression. Because they reverse the instability in bending that can stimulate their formation, these osteophytes seem to be adaptive rather than degenerative. Results suggest that osteophytes could cause clinical BMD measurements to underestimate vertebral compressive strength

    Recent studies on biological control of plant diseases in Japan

    No full text
    corecore