54 research outputs found

    Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury

    Get PDF
    BACKGROUND: Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury. METHODS: Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed. RESULTS: A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation. CONCLUSION: These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects

    Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes

    Get PDF
    We prepared small unilamellar liposomes derivatised with single chain antibody fragments specific for the ED-B domain of B-fibronectin. This extracellular matrix associated protein is expressed around newly forming blood vessels in the vicinity of many types of tumours. The single chain antibody fragments were functionalised by introduction of C-terminal cysteines and linked to liposomes via maleimide groups located at the terminal ends of poly(ethylene glycol) modified phospholipids. The properties of these anti-ED-B single chain antibody fragments-liposomes were analysed in vitro on ED-B fibronectin expressing Caco-2 cells and in vivo by studying their biodistribution and their therapeutic potential in mice bearing subcutanous F9 teratocarcinoma tumours. Radioactively labelled (114mIndium) single chain antibody fragments-liposomes accumulated in the tumours at 2–3-fold higher concentrations during the first 2 h after i.v. injection compared to unmodified liposomes. After 6–24 h both liposome types were found in similar amounts (8–10% injected dose g−1) in the tumours. Animals treated i.v. with single chain antibody fragments-liposomes containing the new cytotoxic agent 2′-deoxy-5-fluorouridylyl-N4-octadecyl-1-β-D-arabinofuranosylcytosine (30 mg kg-1 per dose, five times every 24 h) showed a reduction of tumour growth by 62–90% determined on days 5 and 8, respectively, compared to animals receiving control liposomes. Histological analysis revealed a marked reduction of F9 tumour cells and excessive deposition of fibronectin in the extracellular matrix after treatment with single chain antibody fragments-2-dioxy-5-fluorouridylyl-N4-octadecyl-1-β-D-arabinofuranosylcytosine-liposomes. Single chain antibody fragments-liposomes targeted to ED-B fibronectin positive tumours therefore represent a promising and versatile novel drug delivery system for the treatment of tumours

    Imaging of Disease Dynamics during Meningococcal Sepsis

    Get PDF
    Neisseria meningitidis is a human pathogen that causes septicemia and meningitis with high mortality. The disease progression is rapid and much remains unknown about the disease process. The understanding of disease development is crucial for development of novel therapeutic strategies and vaccines against meningococcal disease. The use of bioluminescent imaging combined with a mouse disease model allowed us to investigate the progression of meningococcal sepsis over time. Injection of bacteria in blood demonstrated waves of bacterial clearance and growth, which selected for Opa-expressing bacteria, indicating the importance of this bacterial protein. Further, N. meningitidis accumulated in the thyroid gland, while thyroid hormone T4 levels decreased. Bacteria reached the mucosal surfaces of the upper respiratory tract, which required expression of the meningococcal PilC1 adhesin. Surprisingly, PilC1 was dispensable for meningococcal growth in blood and for crossing of the blood-brain barrier, indicating that the major role of PilC1 is to interact with mucosal surfaces. This in vivo study reveals disease dynamics and organ targeting during meningococcal disease and presents a potent tool for further investigations of meningococcal pathogenesis and vaccines in vivo. This might lead to development of new strategies to improve the outcome of meningococcal disease in human patients

    Establishment of a Bluetongue Virus Infection Model in Mice that Are Deficient in the Alpha/Beta Interferon Receptor

    Get PDF
    Bluetongue (BT) is a noncontagious, insect-transmitted disease of ruminants caused by the bluetongue virus (BTV). A laboratory animal model would greatly facilitate the studies of pathogenesis, immune response and vaccination against BTV. Herein, we show that adult mice deficient in type I IFN receptor (IFNAR(−/−)) are highly susceptible to BTV-4 and BTV-8 infection when the virus is administered intravenously. Disease was characterized by ocular discharges and apathy, starting at 48 hours post-infection and quickly leading to animal death within 60 hours of inoculation. Infectious virus was recovered from the spleen, lung, thymus, and lymph nodes indicating a systemic infection. In addition, a lymphoid depletion in spleen, and severe pneumonia were observed in the infected mice. Furthermore, IFNAR(−/−) adult mice immunized with a BTV-4 inactivated vaccine showed the induction of neutralizing antibodies against BTV-4 and complete protection against challenge with a lethal dose of this virus. The data indicate that this mouse model may facilitate the study of BTV pathogenesis, and the development of new effective vaccines for BTV

    Pediatric Measles Vaccine Expressing a Dengue Antigen Induces Durable Serotype-specific Neutralizing Antibodies to Dengue Virus

    Get PDF
    Dengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV). As a proof-of-concept, we inserted into the MV vector a sequence encoding a minimal combined dengue antigen composed of the envelope domain III (EDIII) fused to the ectodomain of the membrane protein (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measles–dengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist

    Profound Depletion of HIV-1 Transcription in Patients Initiating Antiretroviral Therapy during Acute Infection

    Get PDF
    Early intervention resulted in profound depletion of PBMC expressing HIV-1 RNA. This is contrary to chronically infected patients who predominantly showed continuous UsRNA expression on cART. Thus, antiretroviral treatment initiated during the acute phase of infection prevented establishment or expansion of long-lived transcriptionally active viral cellular reservoirs in peripheral blood

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS
    corecore