50 research outputs found
The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota
Ground temperatures in the top few centimetres of the soil profile are key in many biological processes yet remain very poorly documented, especially in the polar regions or over longer timescales. They can vary greatly seasonally and at various spatial scales across the often highly complex and heterogeneous polar landscapes. It is challenging and often impossible to extrapolate soil profile temperatures from meteorological air temperature records. Furthermore, despite the justifiably considerable profile given to contemporary large-scale climate change trends, with the exception of some sites on Greenland, few biological microclimate datasets exist that are of sufficient duration to allow robust linkage and comparison with these large-scale trends. However, it is also clear that the responses of the soil-associated biota of the polar regions to projected climate change cannot be adequately understood without improved knowledge of how landscape heterogeneity affects ground and sub-surface biological microclimates, and of descriptions of these microclimates and their patterns and trends at biologically relevant physical and temporal scales. To stimulate research and discussion in this field, we provide an overview of multi-annual temperature records from 20 High Arctic (Svalbard) and maritime Antarctic (Antarctic Peninsula and Scotia Arc) sites. We highlight important features in the datasets that are likely to have influence on biology in polar terrestrial ecosystems, including (a) summer ground and sub-surface temperatures vary much more than air temperatures; (b) winter ground temperatures are generally uncoupled from air temperatures; (c) the ground thawing period may be considerably shorter than that of positive air temperatures; (d) ground and air freeze–thaw patterns differ seasonally between Arctic and Antarctic; (e) rates of ground temperature change are generally low; (f) accumulated thermal sum in the ground usually greatly exceeds air cumulative degree days. The primary purpose of this article is to highlight the utility and biological relevance of such data, and to this end the full datasets are provided here to enable further analyses by the research community, and incorporation in future wider comparative studies
Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of maritime Antarctica, Signy Island
A CALM grid with a data logger system to monitor the active layer thermal regime was established on Signy Island (60 degrees 43'S, 45 degrees 38'W at 80 m a.s.l.) in December 2005. The active layer at each of the 36 nodes of the grid was monitored measuring the ground temperature at least at 4 different depths between 0.02 and 0.4 m at the end of the summer season. In addition, within the grid, we selected four sites closely spaced (in a ray of 25 m) three of which with the same topographical characteristics (north facing aspect) but different vegetation coverage (one bare ground, BG1 and two sites with different vegetation: Andreaea sp. and Sanionia uncinata) and the fourth (BG2) it is as BG1 a bare ground but with south facing aspect. In particular, 4 thermistors were located at depths of 0.02, 0.3, 0.6, and 0.9 m at BG2 and at the Andreaea sp site, 9 thermistors at 0.02, 0.3, 0.6, 1, 1.2, 1.4, 1.6, 2, and 2.5 m at BG1 and at 0.02 and 0.6 m of depth at Sanionia site. Generally, with the same aspect, a thick vegetation cover (as in Sanionia site) provides a greater insulative effect than a thinner vegetation cover (as in Andreaea site) or bare ground (BG1) because vegetation both shades and insulates the ground resulting in a reduction in summer heat flux.
Ground Surface Temperature (GST) was colder and more buffered in spring and summer under the vegetated ground than in BG1, although the coldest GST and lowest Thawing Degree Days (TDD) were recorded at BG2 and related to its southern aspect. Our data confirm that air temperature is the main driver of GST, as already reported both in the Arctic and Antarctic. We also found that the effect of air temperature changes seasonally, being drastically reduced in winter and, to a lesser extent, in fall and spring, when there is generally thin snow cover (<30 cm). During the summer, when snow cover is usually absent, the air temperature is the dominant driver, although incoming radiation also had an effect on the northern exposed bare ground and to a lesser extent on the vegetated and southerly exposed bare ground.
The active layer ranges between 81 and 185 cm on the 4 continuously monitored sites and, considering the sites with the same aspect, it is thicker under bare ground (between 10% up to more than 100%) than under vegetated ground, confirming previous observations in the Arctic and Antarctic. However at our sites, climate forcing has no effect on the active layer thickness, enhancing the role of soil properties including the periods of high moisture content and lateral flow of water.
The lack of a statistically significant regressions between GST and active layer thickness could be due to the limited study period (four years) and/or to the variation with time of changes in soil characteristics such as soil moisture, and the possible occurrence of non-conductive heat transfer processes including the lateral flow of water. Further data are required to understand the role of moisture and possible ground water circulation within the active layer to explain the unexpected strong dichotomy between the GST regime and active layer thickness
Habitat temperature and the temporal scaling of cold hardening in the high Arctic collembolan, Hypogastrura tullbergi (Schäffer)
1. Cold tolerance is a fundamental adaptation of insects to high latitudes. Flexibility in the cold hardening process, in turn, provides a useful indicator of the extent to which polar insects can respond to spatial and temporal variability in habitat temperature.
2. A scaling approach was adopted to investigate flexibility in the cold tolerance of the high Arctic collembolan, Hypogastrura tullbergi, over different time-scales. The cold hardiness of animals was compared from diurnal warming and cooling phases in the field, and controlled acclimation and cooling treatments in the laboratory. Plasticity in acclimation responses was examined using three parameters: low temperature survival, cold shock survival, and supercooling points (SCPs).
3. Over time-scales of 24–48 h, both field animals from warm diurnal phases and laboratory cultures from a 'warm' acclimation regime (18 °C) consistently showed greater or equivalent cold hardiness to animals from cool diurnal phases and acclimation regimes (3 °C).
4. No significant evidence was found of low temperature acclimation after either hours or days of low temperature exposure. The cold hardiness of H. tullbergi remained 'seasonal' in character and mortality throughout was indicative of the summer state of acclimatization.
5. These data suggest that H. tullbergi employs an 'all or nothing' cryoprotective strategy, cold hardening at seasonal but not diel-temporal scales.
6. It is hypothesised that rapid cold hardening offers little advantage to these high Arctic arthropods because sub-zero habitat temperatures during the summer on West Spitsbergen are rare and behavioural migration into soil profiles offers sufficient buffering against low summer temperatures
Recommended from our members
Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells
Recommended from our members