1,288 research outputs found

    Turbulence and galactic structure

    Full text link
    Interstellar turbulence is driven over a wide range of scales by processes including spiral arm instabilities and supernovae, and it affects the rate and morphology of star formation, energy dissipation, and angular momentum transfer in galaxy disks. Star formation is initiated on large scales by gravitational instabilities which control the overall rate through the long dynamical time corresponding to the average ISM density. Stars form at much higher densities than average, however, and at much faster rates locally, so the slow average rate arises because the fraction of the gas mass that forms stars at any one time is low, ~10^{-4}. This low fraction is determined by turbulence compression, and is apparently independent of specific cloud formation processes which all operate at lower densities. Turbulence compression also accounts for the formation of most stars in clusters, along with the cluster mass spectrum, and it gives a hierarchical distribution to the positions of these clusters and to star-forming regions in general. Turbulent motions appear to be very fast in irregular galaxies at high redshift, possibly having speeds equal to several tenths of the rotation speed in view of the morphology of chain galaxies and their face-on counterparts. The origin of this turbulence is not evident, but some of it could come from accretion onto the disk. Such high turbulence could help drive an early epoch of gas inflow through viscous torques in galaxies where spiral arms and bars are weak. Such evolution may lead to bulge or bar formation, or to bar re-formation if a previous bar dissolved. We show evidence that the bar fraction is about constant with redshift out to z~1, and model the formation and destruction rates of bars required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess, Dordrecht: Kluwer, in press (presented at a conference in South Africa, June 7-12, 2004). 19 pgs, 5 figure

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans

    Thyroid-stimulating hormone elevation misdiagnosed as subclinical hypothyroidism following non-convulsive status epilepticus: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Non-convulsive status epilepticus is a form of epileptic seizure that occurs without convulsions. Recent reviews suggest that the diagnosis of non-convulsive status epilepticus remains difficult. Here, we report the case of a patient with thyroid-stimulating hormone elevation misdiagnosed as subclinical hypothyroidism following non-convulsive status epilepticus.</p> <p>Case presentation</p> <p>Our patient was a 68-year-old Japanese woman. The results of endocrine testing after her first episode of non-convulsive status epilepticus suggested latent subclinical hypothyroidism: she had elevated thyroid-stimulating hormone with normal levels of free tri-iodothyronine and free thyroxine. On examination, a diagnosis of thyroid disorder was not supported by other test results and our patient remained untreated. A follow-up examination revealed that her thyroid-stimulating hormone levels had spontaneously normalized. When she consulted another doctor for confusion, the transient increase in thyroid-stimulating hormone levels following non-convulsive status epilepticus was mistaken for subclinical hypothyroidism, and unfortunately treated with levothyroxine. Our patient then experienced levothyroxine-induced non-convulsive status epilepticus.</p> <p>Conclusions</p> <p>In this report, we suggested possible mechanisms for latent hypothyroid-like hormone abnormality following epileptic seizures and the possibility of provoking epileptic seizures by administering levothyroxine for misdiagnosed subclinical hypothyroidism.</p

    Omura’s whales (Balaenoptera omurai) off northwest Madagascar: ecology, behaviour and conservation needs

    Get PDF
    The Omura’s whale (Balaenoptera omurai) was described as a new species in 2003 and then soon after as an ancient lineage basal to a Bryde’s/sei whale clade. Currently known only from whaling and stranding specimens primarily from the western Pacific and eastern Indian Oceans, there exist no confirmed field observations or ecological/behavioural data. Here we present, to our knowledge, the first genetically confirmed documentation of living Omura’s whales including descriptions of basic ecology and behaviour from northwestern Madagascar. Species identification was confirmed through molecular phylogenetic analyses of biopsies collected from 18 adult animals. All individuals shared a single haplotype in a 402 bp sequence of mtDNA control region, suggesting low diversity and a potentially small population. Sightings of 44 groups indicated preference for shallow-water shelf habitat with sea surface temperature between 27.4°C and 30.2°C. Frequent observations were made of lunge feeding, possibly on zooplankton. Observations of four mothers with young calves, and recordings of a song-like vocalization probably indicate reproductive behaviour. Social organization consisted of loose aggregations of predominantly unassociated single individuals spatially and temporally clustered. Photographic recapture of a female re-sighted the following year with a young calf suggests site fidelity or a resident population. Our results demonstrate that the species is a tropical whale without segregation of feeding and breeding habitat, and is probably non-migratory; our data extend the range of this poorly studied whale into the western Indian Ocean. Exclusive range restriction to tropical waters is rare among baleen whale species, except for the various forms of Bryde’s whales and Omura’s whales. Thus, the discovery of a tractable population of Omura’s whales in the tropics presents an opportunity for understanding the ecological factors driving potential convergence of life-history patterns with the distantly related Bryde’s whales

    Stable Isotope Analysis Can Potentially Identify Completely-Digested Bloodmeals in Mosquitoes

    Get PDF
    Background: Vertebrate bloodfeeding is a critical component of a mosquito’s ability to transmit pathogens that cause diseases such as malaria, dengue fever and viral encephalitis. Due to degradation by the digestive process, current methods to identify mosquito bloodmeal sources are only useful for approximately 36 hours post-feeding. A critical need exists for technologies to extend this window and gain a more complete picture of mosquito feeding behavior for epidemiological studies. Stable isotopes are useful for investigating organism feeding behavior because the isotopic ratio of an organism’s tissues reflects that of the material it ingests. Methodology/Principal Findings: Proof-of-principle data indicates that after bloodfeeding, Aedes albopictus mosquitoes acquire diagnostic Carbon and Nitrogen stable isotope profiles from their vertebrate hosts that can be accurately identified one week post-feeding, approximately 4 days after the entire bloodmeal has been digested. Total C/N ratio served as a biomarker marker for bloodfeeding (P,0.02), while dN was the most informative variable which could distinguish between unfed, chicken-fed and human-fed mosquitoes (P,0.01). By plotting C/N vs. dN, all feeding treatments could be identified in a double-blind analysis. Conclusions/Significance: These proof-of-principle experiments indicate that analysis of stable isotopes can be used to distinguish bloodfed from unfed mosquitoes, and also distinguish between different vertebrate bloodmeal sources eve

    Morphological and Behavioral Changes in the Pathogenesis of a Novel Mouse Model of Communicating Hydrocephalus

    Get PDF
    The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate

    Proximal tibial osteophytes and their relationship with the height of the tibial spines of the intercondylar eminence: paleopathological study

    Get PDF
    Tibial spiking (i.e., spurring of tibial spines), eburnation, and osteophytes are considered features of osteoarthritis. This investigation employed direct inspection of the medial and lateral tibial plateaus in paleopathological specimens to analyze the frequency and morphological features of osteoarthritis and to define any relationship between the size of osteophytes and that of the intercondylar tibial spines. A total of 35 tibial bone specimens were evaluated for the degree of osteoarthritis and presence of eburnation. Each plateau was also divided into four quadrants and the presence and size of bone outgrowths were recorded in each quadrant. The “medial/lateral tibial intercondylar spine index” for each specimen was calculated as follows: (medial/lateral intercondylar tibial spine height)/(anteroposterior width of the superior tibial surface). The relationships between medial and lateral tibial height indexes with the degree of osteoarthritis were then tested. Osteophytes were observed more frequently in the anterior quadrants of both tibial plateaus than in the posterior quadrants (29 vs 16 for the medial tibial plateau [p = 0.01] and 28 vs 20 for the lateral tibial plateau [p = 0.04]). Eburnation was seen more frequently in the posterior regions of both tibial plateaus than in the anterior regions (17 vs 5, p &lt; 0.01). In specimens with no signs of osteoarthritis the lateral intercondylar tibial index was significantly lower than that in specimens with some degree of osteoarthritis (p = 0.02). The medial intercondylar tibial index of the specimens with no signs of osteoarthritis was not significantly different from that of the specimens with some degree of osteoarthritis (p = 0.45). There was a positive correlation between the lateral spine height index and the overall grading of osteoarthritis, (r = 0.6, p &lt; 0.01). In the anteromedial and posteromedial quadrants of the lateral tibial plateau, the association between the lateral intercondylar tibial spine index and the grade of osteophytes was 0.5 (p &lt; 0.01) and 0.7 (p &lt; 0.01) respectively. Spiking of the lateral tibial intercondylar spine is associated with osteophyte formation and osteoarthritis. Eburnation occurs mainly in the posterior parts of the tibial plateaus while osteophytes arise mainly in the anterior parts. These findings suggest that stresses occurring in the flexed knee may contribute to many of the morphological abnormalities of osteoarthritis

    Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The water channel protein aquaporin-4 (AQP4) is reported to be of possible major importance for accessory cerebrospinal fluid (CSF) circulation pathways. We hypothesized that changes in AQP4 expression in specific brain regions correspond to the severity and duration of hydrocephalus.</p> <p>Methods</p> <p>Hydrocephalus was induced in adult rats (~8 weeks) by intracisternal kaolin injection and evaluated after two days, one week and two weeks. Using magnetic resonance imaging (MRI) we quantified lateral ventricular volume, water diffusion and blood-brain barrier properties in hydrocephalic and control animals. The brains were analysed for AQP4 density by western blotting and localisation by immunohistochemistry. Double fluorescence labelling was used to study cell specific origin of AQP4.</p> <p>Results</p> <p>Lateral ventricular volume was significantly increased over control at all time points after induction and the periventricular apparent diffusion coefficient (ADC) value significantly increased after one and two weeks of hydrocephalus. Relative AQP4 density was significantly decreased in both cortex and periventricular region after two days and normalized after one week. After two weeks, periventricular AQP4 expression was significantly increased. Relative periventricular AQP4 density was significantly correlated to lateral ventricular volume. AQP4 immunohistochemical analysis demonstrated the morphological expression pattern of AQP4 in hydrocephalus in astrocytes and ventricular ependyma. AQP4 co-localized with astrocytic glial fibrillary acidic protein (GFAP) in glia limitans. In vascular structures, AQP4 co-localized to astroglia but not to microglia or endothelial cells.</p> <p>Conclusions</p> <p>AQP4 levels are significantly altered in a time and region dependent manner in kaolin-induced hydrocephalus. The presented data suggest that AQP4 could play an important neurodefensive role, and may be a promising future pharmaceutical target in hydrocephalus and CSF disorders.</p
    corecore