235 research outputs found
Confocal laser scanning, scanning electron, and transmission electron microscopy investigation of Enterococcus faecalis biofilm degradation using passive and active sodium hypochlorite irrigation within a simulated root canal model
Root canal irrigation is an important adjunct to control microbial infection. The aim of this study was to investigate the effect of 2.5% (wt/vol) sodium hypochlorite (NaOCl) agitation on the removal, killing, and degradation of Enterococcus faecalis biofilm. A total of 45 root canal models were manufactured using 3D printing with each model comprising an 18 mm length simulated root canal of apical size 30 and taper 0.06. E. faecalis biofilms were grown on the apical 3 mm of the models for 10 days. A total of 60 s of 9 ml of 2.5% NaOCl irrigation using syringe and needle was performed, the irrigant was either left stagnant in the canal or agitated using manual (Gutta-percha), sonic, and ultrasonic methods for 30 s. Following irrigation, the residual biofilms were observed using confocal laser scanning, scanning electron, and transmission electron microscopy. The data were analyzed using one-way ANOVA with Dunnett post hoc tests at a level of significance p ≤ .05. Consequence of root canal irrigation indicate that the reduction in the amount of biofilm achieved with the active irrigation groups (manual, sonic, and ultrasonic) was significantly greater when compared with the passive and untreated groups (p < .05). Collectively, finding indicate that passive irrigation exhibited more residual biofilm on the model surface than irrigant agitated by manual or automated (sonic, ultrasonic) methods. Total biofilm degradation and nonviable cells were associated with the ultrasonic group
D-SPACE4Cloud: A Design Tool for Big Data Applications
The last years have seen a steep rise in data generation worldwide, with the
development and widespread adoption of several software projects targeting the
Big Data paradigm. Many companies currently engage in Big Data analytics as
part of their core business activities, nonetheless there are no tools and
techniques to support the design of the underlying hardware configuration
backing such systems. In particular, the focus in this report is set on Cloud
deployed clusters, which represent a cost-effective alternative to on premises
installations. We propose a novel tool implementing a battery of optimization
and prediction techniques integrated so as to efficiently assess several
alternative resource configurations, in order to determine the minimum cost
cluster deployment satisfying QoS constraints. Further, the experimental
campaign conducted on real systems shows the validity and relevance of the
proposed method
Quantifying variation in the ability of yeasts to attract Drosophila melanogaster
Yeasts that invade and colonise fruit significantly enhance the volatile chemical diversity of this ecosystem. These modified bouquets are thought to be more attractive to Drosophila flies than the fruit alone, but the variance of attraction in natural yeast populations is uncharacterised. Here we investigate how a range of yeast isolates affect the attraction of female D. melanogaster to fruit in a simple two choice assay comparing yeast to sterile fruit. Of the 43 yeast isolates examined, 33 were attractive and seven repellent to the flies. The results of isolate-versus-isolate comparisons provided the same relative rankings. Attractiveness varied significantly by yeast, with the strongly fermenting Saccharomyces species generally being more attractive than the mostly respiring non-Saccharomyces species (P = 0.0035). Overall the habitat (fruit or other) from which the isolates were directly sampled did not explain attraction (P = 0.2352). However, yeasts isolated from fruit associated niches were more attractive than those from non-fruit associated niches (P = 0.0188) regardless of taxonomic positioning. These data suggest that while attractiveness is primarily correlated with phylogenetic status, the ability to attract Drosophila is a labile trait among yeasts that is potentially associated with those inhabiting fruit ecosystems. Preliminary analysis of the volatiles emitted by four yeast isolates in grape juice show the presence/absence of ethanol and acetic acid were not likely explanations for the observed variation in attraction. These data demonstrate variation among yeasts for their ability to attract Drosophila in a pattern that is consistent with the hypothesis that certain yeasts are manipulating fruit odours to mediate interactions with their Drosophila dispersal agent. © 2013 Palanca et al
A hippocampal Cdk5 pathway regulates extinction of contextual fear
Treatment of emotional disorders involves the promotion of extinction processes, which are defined as the learned reduction of fear. The molecular mechanisms underlying extinction have only begun to be elucidated. By employing genetic and pharmacological approaches in mice, we show here that extinction requires downregulation of Rac-1 and cyclin-dependent kinase 5 (Cdk5), and upregulation of p21 activated kinase-1 (PAK-1) activity. This is physiologically achieved by a Rac-1–dependent relocation of the Cdk5 activator p35 from the membrane to the cytosol and dissociation of p35 from PAK-1. Moreover, our data suggest that Cdk5/p35 activity prevents extinction in part by inhibition of PAK-1 activity in a Rac-1–dependent manner. We propose that extinction of contextual fear is regulated by counteracting components of a molecular pathway involving Rac-1, Cdk5 and PAK-1. Our data suggest that this pathway could provide a suitable target for therapeutic treatment of emotional disorders.National Institutes of Health (U.S.) (Grant NS051874)Alexander von Humboldt-Stiftung (German Research Foundation Fellowship)European Neuroscience Institute Goettinge
The effect of sodium hypochlorite concentration and irrigation needle extension on biofilm removal from a simulated root canal model
To investigate the effect of sodium hypochlorite concentration and needle extension on removal of Enterococcus faecalis biofilm, sixty root canal models were 3D printed. Biofilms were grown on the apical 3 mm of the canal for 10 days. Irrigation for 60s with 9 mL of either 5.25% or 2.5% NaOCl or water was performed using a needle inserted either 3 or 2 mm from the canal terminus and imaged using fluorescence microscopy and residual biofilm percentages were calculated using imaging software. The data were analysed using analysis of covariance and two-sample t-tests. A significance level of 0.05 was used throughout. Residual biofilm was less using 5.25% than with 2.5% NaOCl. Statistically significant biofilm removal was evident with the needle placed closer to the canal terminus. A greater reduction of available chlorine and pH was noted as the concentration increased. One-minute irrigation was not sufficient for complete biofilm removal
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Differential role of entorhinal and hippocampal nerve growth factor in short- and long-term memory modulation
ATP signalling in epilepsy
This paper focuses on a role for ATP neurotransmission and gliotransmission in the pathophysiology of epileptic seizures. ATP along with gap junctions propagates the glial calcium wave, which is an extraneuronal signalling pathway in the central nervous system. Recently astrocyte intercellular calcium waves have been shown to underlie seizures, and conventional antiepileptic drugs have been shown to attenuate these calcium waves. Blocking ATP-mediated gliotransmission, therefore, represents a potential target for antiepileptic drugs. Furthermore, while knowledge of an antiepileptic role for adenosine is not new, a recent study showed that adenosine accumulates from the hydrolysis of accumulated ATP released by astrocytes and is believed to inhibit distant synapses by acting on adenosine receptors. Such a mechanism is consistent with a surround-inhibitory mechanism whose failure would predispose to seizures. Other potential roles for ATP signalling in the initiation and spread of epileptiform discharges may involve synaptic plasticity and coordination of synaptic networks. We conclude by making speculations about future developments
- …
