2,193 research outputs found

    Intravitreal injection of Ozurdex(®) implant in patients with persistent diabetic macular edema, with six-month follow-up

    Get PDF
    AIM: To evaluate the efficacy of intravitreal dexamethasone injections in diabetic macular edema (DME). METHODS: A 700 μg slow-release intravitreal dexamethasone implant (Ozurdex®) was placed in the vitreal cavity of 17 patients (19 eyes) affected with persistent DME. Best corrected visual acuity (BCVA) was assessed through Early Treatment Diabetic Retinopathy Study (ETDRS). Central macular thickness (CMT) was measured by spectral-domain optical coherence tomography. BCVA and CMT examinations were carried out at baseline (T0) and repeated after three days, one month (T1), three months (T3), four months (T4), and six months (T6) post injection. RESULTS: Dexamethasone implant induced an improvement in ETDRS at T1, T3, T4, and T6 post injection. CMT was reduced at T1, T3, and T4, while at T6, CMT values were not statistically different from baseline. No complications were observed during the follow-up. CONCLUSION: Our data suggest that dexamethasone implant is effective in reducing DME symptoms within a six-month frame

    A minimum specification dataset for liquid ocular endotamponades: recommendations by a European expert panel

    Get PDF
    \ua9 2023, The Author(s). Purpose: To propose a minimum specification dataset to characterize liquid ocular endotamponades (OEs), namely silicone oil (SO), heavy SO (HSO), perfluorodecalin (PFD), and perfluoro-octane (PFO), in terms of physicochemical properties, purity and available evidence of safety, in line with ISO16672:2020. Methods: An evidence-based consensus using the expert panel technique was conducted. Two facilitators led a committee of 11 European experts. Facilitators prepared a dataset for each compound including the list of specifications relevant for the safety, identified by the group members on the basis of expertise and a comprehensive literature review. Each item was ranked by each member using a 9-point scale from 1 “absolutely to not include” to 9 “absolutely to include” in two rounds followed by discussion. Only items reaching consensus (score ≥ 7 from ≥ 75% of members) were included in the final datasets. Results: For all OEs, consensus was reached to include manufacturer, density, refractive index, chemical composition, dynamic viscosity, interfacial and surface tension, endotoxins, in vitro cytotoxicity assessment, and any evidence from ex vivo and/or in vivo tests for safety assessment. Additional specifications were added for SO (molecular weight distribution, content of oligosiloxanes with MW ≤ 1000 g/mol, spectral transmittance) and PFD/PFO (% of pure PFD/PFO in the final product, vapor pressure, chemical analyses performed for safety assessment). Conclusion: The proposed evidence-based minimum specification datasets for SO, HSO, PFD, and PFO have the potential to provide surgeons and health service purchasers with an easily available overview of the most relevant information for the safety assessment of OEs. [Figure not available: see fulltext.

    Increased carotid intima-media thickness and stiffness in obese children

    No full text
    Summary (Abstract not available):Obesity in childhood increases the risk of atherosclerotic disease and death in adulthood. We studied 100 children with obesity and 47 healthy age-mathced control subjects, mean age 10 years of both groups. Biochemical parameters describing lipoprotein and glucose metabolism were measured. Quantitative B-mode ultrasound examination of common carotid arteries was performed. Carotid thickness and stiffness were significantly increased in obese children as compared to nonobese ones, independently of traditional cardiovascular risk factors. Obesity should be regarded as a disease with vascular implications even in young age

    ATP redirects cytokine trafficking and promotes novel membrane TNF signaling via microvesicles

    Get PDF
    Cellular stress or injury induces release of endogenous danger signals such as ATP, which plays a central role in activating immune cells. ATP is essential for the release of nonclassically secreted cytokines such as IL-1β but, paradoxically, has been reported to inhibit the release of classically secreted cytokines such as TNF. Here, we reveal that ATP does switch off soluble TNF (17 kDa) release from LPS-treated macrophages, but rather than inhibiting the entire TNF secretion, ATP packages membrane TNF (26 kDa) within microvesicles (MVs). Secretion of membrane TNF within MVs bypasses the conventional endoplasmic reticulum– and Golgi transport–dependent pathway and is mediated by acid sphingomyelinase. These membrane TNF–carrying MVs are biologically more potent than soluble TNF in vivo, producing significant lung inflammation in mice. Thus, ATP critically alters TNF trafficking and secretion from macrophages, inducing novel unconventional membrane TNF signaling via MVs without direct cell-to-cell contact. These data have crucial implications for this key cytokine, particularly when therapeutically targeting TNF in acute inflammatory diseases.—Soni, S., O'Dea, K. P., Tan, Y. Y., Cho, K., Abe, E., Romano, R., Cui, J., Ma, D., Sarathchandra, P., Wilson, M. R., Takata, M. ATP redirects cytokine trafficking and promotes novel membrane TNF signaling via microvesicles. FASEB J. 33, 6442–6455 (2019). www.fasebj.org

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (Ăźtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    Coherent spinor dynamics in a spin-1 Bose condensate

    Full text link
    Collisions in a thermal gas are perceived as random or incoherent as a consequence of the large numbers of initial and final quantum states accessible to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a degenerate Fermi gas, the phase space accessible to low energy collisions is so restricted that collisions be-come coherent and reversible. Here, we report the observation of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin states, a condensate in the third spin state is coherently and reversibly created by atomic collisions. The observed dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. The spin-dependent scattering length is determined from these oscillations to be -1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of the system by applying differential phase shifts to the spin states using magnetic fields.Comment: 19 pages, 3 figure

    Cardiac cycle efficiency as prognostic index in ICUs

    Get PDF
    We implement a beam steering system based on a directly-modulated unseeded R-SOA, allowing the distribution of 2.4 GHz 64QAM OFDMA signals with 2048-subcarriers satisfying IEEE 802.16e specifications

    Discovery of the Onset of Rapid Accretion by a Dormant Massive Black Hole

    Full text link
    Massive black holes are believed to reside at the centres of most galaxies. They can be- come detectable by accretion of matter, either continuously from a large gas reservoir or impulsively from the tidal disruption of a passing star, and conversion of the gravitational energy of the infalling matter to light. Continuous accretion drives Active Galactic Nuclei (AGN), which are known to be variable but have never been observed to turn on or off. Tidal disruption of stars by dormant massive black holes has been inferred indirectly but the on- set of a tidal disruption event has never been observed. Here we report the first discovery of the onset of a relativistic accretion-powered jet in the new extragalactic transient, Swift J164449.3+573451. The behaviour of this new source differs from both theoretical models of tidal disruption events and observations of the jet-dominated AGN known as blazars. These differences may stem from transient effects associated with the onset of a powerful jet. Such an event in the massive black hole at the centre of our Milky Way galaxy could strongly ionize the upper atmosphere of the Earth, if beamed towards us.Comment: Submitted to Nature. 4 pages, 3 figures (main paper). 26 pages, 13 figures (supplementary information
    • …
    corecore