8 research outputs found

    Short-cut to new anomalies in gravity duals to logarithmic conformal field theories

    Full text link
    Various massive gravity theories in three dimensions are conjecturally dual to logarithmic conformal field theories (LCFTs). We summarise the status of these conjectures. LCFTs are characterised by the values of the central charges and the so-called "new anomalies". We employ a short-cut to calculate these new anomalies in generalised massive gravity and in the recently proposed higher-derivative gravity theories with holographic c-theorem. Both cases permit LCFTs exhibiting intriguing features, like rank three Jordan cells or non-zero central charges. Finally, as an example we discuss in some detail the partially massless version of new massive gravity, a theory with several special properties that we call "partially massless gravity".Comment: 34 pages, 2 figures; v2: added references; v3: Several rewordings in the introduction and section 2, added references. Matches published versio

    Testing A (Stringy) Model of Quantum Gravity

    Get PDF
    I discuss a specific model of space-time foam, inspired by the modern non-perturbative approach to string theory (D-branes). The model views our world as a three brane, intersecting with D-particles that represent stringy quantum gravity effects, which can be real or virtual. In this picture, matter is represented generically by (closed or open) strings on the D3 brane propagating in such a background. Scattering of the (matter) strings off the D-particles causes recoil of the latter, which in turn results in a distortion of the surrounding space-time fluid and the formation of (microscopic, i.e. Planckian size) horizons around the defects. As a mean-field result, the dispersion relation of the various particle excitations is modified, leading to non-trivial optical properties of the space time, for instance a non-trivial refractive index for the case of photons or other massless probes. Such models make falsifiable predictions, that may be tested experimentally in the foreseeable future. I describe a few such tests, ranging from observations of light from distant gamma-ray-bursters and ultra high energy cosmic rays, to tests using gravity-wave interferometric devices and terrestrial particle physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings style. Invited talk at the third international conference on Dark Matter in Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200

    Coherent backscattering of electromagnetic waves in random media

    No full text
    NatuurwetenskappeInstituut Vir Teoretiese FisikaPlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Metal-insulator transition in three-dimensional Anderson superlattice with rough interfaces

    No full text
    NatuurwetenskappeInstituut Vir Teoretiese FisikaPlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]
    corecore