25 research outputs found

    Breast Cancer Epigenetics: From DNA Methylation to microRNAs

    Get PDF
    Both appropriate DNA methylation and histone modifications play a crucial role in the maintenance of normal cell function and cellular identity. In cancerous cells these “epigenetic belts” become massively perturbed, leading to significant changes in expression profiles which confer advantage to the development of a malignant phenotype. DNA (cytosine-5)-methyltransferase 1 (Dnmt1), Dnmt3a and Dnmt3b are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells. Intriguingly, DNMTs were found to be overexpressed in cancerous cells, which is believed to partly explain the hypermethylation phenomenon commonly observed in tumors. However, several lines of evidence indicate that further layers of gene regulation are critical coordinators of DNMT expression, catalytic activity and target specificity. Splice variants of DNMT transcripts have been detected which seem to modulate methyltransferase activity. Also, the DNMT mRNA 3′UTR as well as the coding sequence harbors multiple binding sites for trans-acting factors guiding post-transcriptional regulation and transcript stabilization. Moreover, microRNAs targeting DNMT transcripts have recently been discovered in normal cells, yet expression of these microRNAs was found to be diminished in breast cancer tissues. In this review we summarize the current knowledge on mechanisms which potentially lead to the establishment of a DNA hypermethylome in cancer cells

    Medical management for lower airway inflammation

    No full text

    Association between inflammatory airway disease of horses and exposure to respiratory viruses: a case control study

    No full text
    BACKGROUND: Inflammatory airway disease (IAD) in horses, similar to asthma in humans, is a common cause of chronic poor respiratory health and exercise intolerance due to airway inflammation and exaggerated airway constrictive responses. Human rhinovirus is an important trigger for the development of asthma; a similar role for viral respiratory disease in equine IAD has not been established yet. METHODS: In a case–control study, horses with IAD (n = 24) were compared to control animals from comparable stabling environments (n = 14). Horses were classified using pulmonary function testing and bronchoalveolar lavage. PCR for equine rhinitis virus A and B (ERAV, ERBV), influenza virus (EIV), and herpesviruses 2, 4, and 5 (EHV-2, EHV-4, EHV-5) was performed on nasal swab, buffy coat from whole blood, and cells from BAL fluid (BALF), and serology were performed. Categorical variables were compared between IAD and control using Fisher’s exact test; continuous variables were compared with an independent t-test. For all analyses, a value of P <0.05 was considered significant. RESULTS: There was a significant association between diagnosis of IAD and history of cough (P = 0.001) and exercise intolerance (P = 0.003) but not between nasal discharge and IAD. Horses with IAD were significantly more likely to have a positive titer to ERAV (68 %) vs. control horses (32 %). Horses with IAD had higher log-transformed titers to ERAV than did controls (2.28 ± 0.18 v.1.50 ± 0.25, P = 0.038). There was a significant association between nasal shedding (positive PCR) of EHV-2 and diagnosis of IAD (P = 0.002). CONCLUSIONS: IAD remains a persistent problem in the equine population and has strong similarities to the human disease, asthma, for which viral infection is an important trigger. The association between viral respiratory infection and development or exacerbation of IAD in this study suggests that viral infection may contribute to IAD susceptibility; there is, therefore, merit in further investigation into the relationship between respiratory virus exposure and development of IAD

    Use of the impulse oscillometry system for testing pulmonary function during methacholine bronchoprovocation in horses.

    Full text link
    OBJECTIVE: To compare sensitivity of the impulse oscillometry system (IOS) with that of the conventional reference technique (CRT; ie, esophageal balloon method) for pulmonary function testing in horses. ANIMALS: 10 horses (4 healthy; 6 with recurrent airway obstruction [heaves] in remission). PROCEDURE: Healthy horses (group-A horses) and heaves-affected horses (group-B horses) were housed in a controlled environment. At each step of a methacholine bronchoprovocation test, threshold concentration (TC(2SD); results in a 2-fold increase in SD of a value) and sensitivity index (SI) were determined for respiratory tract system resistance (R(rs)) and respiratory tract system reactance (X(rs)) at 5 to 20 Hz by use of IOS and for total pulmonary resistance (RL) and dynamic lung compliance (C(dyn)), by use of CRT. RESULTS: Bronchoconstriction resulted in an increase in R(rs) at 5 Hz (R(5Hz)) and a decrease in X(rs) at all frequencies. Most sensitive parameters were X(rs) at 5 Hz (X(5Hz)), R(5Hz), and R(5Hz):R(10Hz) ratio; RL and the provocation concentration of methacholine resulting in a 35% decrease in dynamic compliance (PC(35)C(dyn)) were significantly less sensitive than these IOS parameters. The TC(2SD) for X(rs) at 5 and 10 Hz was significantly lower in group-B horses, compared with group-A horses. The lowest TC(2SD) was obtained for X(5Hz) in group-B horses and R(5Hz) in group-A horses. CONCLUSIONS AND CLINICAL RELEVANCE: In contrast to CRT parameters, IOS parameters were significantly more sensitive for testing pulmonary function.The IOS provides a practical and noninvasive pulmonary function test that may be useful in assessing subclinical changes in horses
    corecore