405 research outputs found

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Gravitational collapse with tachyon field and barotropic fluid

    Full text link
    A particular class of space-time, with a tachyon field, \phi, and a barotropic fluid constituting the matter content, is considered herein as a model for gravitational collapse. For simplicity, the tachyon potential is assumed to be of inverse square form i.e., V(\phi) \sim \phi^{-2}. Our purpose, by making use of the specific kinematical features of the tachyon, which are rather different from a standard scalar field, is to establish the several types of asymptotic behavior that our matter content induces. Employing a dynamical system analysis, complemented by a thorough numerical study, we find classical solutions corresponding to a naked singularity or a black hole formation. In particular, there is a subset where the fluid and tachyon participate in an interesting tracking behaviour, depending sensitively on the initial conditions for the energy densities of the tachyon field and barotropic fluid. Two other classes of solutions are present, corresponding respectively, to either a tachyon or a barotropic fluid regime. Which of these emerges as dominant, will depend on the choice of the barotropic parameter, \gamma. Furthermore, these collapsing scenarios both have as final state the formation of a black hole.Comment: 18 pages, 7 figures. v3: minor changes. Final version to appear in GR

    Domain-and species-specific monoclonal antibodies recognize the Von Willebrand Factor-C domain of CCN5

    Get PDF
    The CCN family of proteins typically consists of four distinct peptide domains: an insulin-like growth factor binding protein-type (IGFBP) domain, a Von Willebrand Factor C (VWC) domain, a thrombospondin type 1 repeat (TSP1) domain, and a carboxy-terminal (CT) domain. The six family members participate in many processes, including proliferation, motility, cell-matrix signaling, angiogenesis, and wound healing. Accumulating evidence suggests that truncated and alternatively spliced isoforms are responsible for the diverse functions of CCN proteins in both normal and pathophysiologic states. Analysis of the properties and functions of individual CCN domains further corroborates this idea. CCN5 is unique among the CCN family members because it lacks the CT-domain. To dissect the domain functions of CCN5, we are developing domain-specific mouse monoclonal antibodies. Monoclonal antibodies have the advantages of great specificity, reproducibility, and ease of long-term storage and production. In this communication, we injected mixtures of GST-fused rat CCN5 domains into mice to generate monoclonal antibodies. To identify the domains recognized by the antibodies, we constructed serial expression plasmids that express dual-tagged rat CCN5 domains. All of the monoclonal antibodies generated to date recognize the VWC domain, indicating it is the most highly immunogenic of the CCN5 domains. We characterized one particular clone, 22H10, and found that it recognizes mouse and rat CCN5, but not human recombinant CCN5. Purified 22H10 was successfully applied in Western Blot analysis, immunofluorescence of cultured cells and tissues, and immunoprecipitation, indicating that it will be a useful tool for domain analysis and studies of mouse-human tumor models

    Clinical application of genetic testing for posterior uveal melanoma

    Full text link
    Uveal melanoma is the most common primary intraocular tumor in adults, and it has a strong potential to metastasize. Traditionally, clinicopathological features of these tumors were used to provide a limited prediction of the metastatic risk. However, early genetic studies using karyotype analysis, fluorescence in situ hybridization, and comparative genetic hybridization of posterior uveal melanoma samples identified multiple chromosomal abnormalities associated with a higher risk of fatal metastasis. This correlation between specific genetic abnormalities in uveal melanoma and a patient’s risk for development of metastasis has recently been widely studied, and the development of new prognostic tests has allowed clinicians to predict this metastatic risk with increased accuracy. Such novel tests include gene expression profiling, which analyzes the RNA expression patterns of tumor cells, and multiplex ligation-dependent probe amplification, which detects deletions or and amplifications of DNA in tumor cells. This review discusses the current status of prognostic testing techniques available to clinicians and patients for posterior uveal melanomas

    Pathways for scale and discipline reconciliation: current socio-ecological modelling methodologies to explore and reconstitute human prehistoric dynamics

    Get PDF
    International audienceThis communication elaborates a plea for the necessity of a specific modelling methodology which does not sacrifice two modelling principles: explanation Micro and correlation Macro. Three goals are assigned to modelling strategies: describe, understand and predict. One tendency in historical and spatial modelling is to develop models at a micro level in order to describe and by that way, understand the connection between local ecological contexts, acquired through local ecological data, and local social practices, acquired through archaeology. However, such a method faces difficulties for expanding its validity: It is validated by its adequacy with local data, but the prediction step is unreachable and quite nothing can be said for places out where. On the other hand, building models at a far larger scale, for instance at the continent and even the world level, enhances the connection between ecology and its temporal variability. Such connections are based on well-founded theories but lower the " small causes, big effects " emergence corresponding to agent-based approaches and the related inherent variability of socio-ecological dynamics that one can notice at a lower scale. We then propose a plea for combining both elements for building large-scale modelling tools, which aims are to describe and provide predictions on long-term past evolutions, that include the test of explaining socio-anthropological hypotheses, i.e. the emergence and the spread of local social innovations

    Structural Dynamic of a Self-Assembling Peptide d-EAK16 Made of Only D-Amino Acids

    Get PDF
    We here report systematic study of structural dynamics of a 16-residue self-assembling peptide d-EAK16 made of only D-amino acids. We compare these results with its chiral counterpart L-form, l-EAK16. Circular dichroism was used to follow the structural dynamics under various temperature and pH conditions. At 25°C the d-EAK16 peptide displayed a typical beta-sheet spectrum. Upon increasing the temperature above 70°C, there was a spectrum shift as the 218 nm valley widens toward 210 nm. Above 80°C, the d-EAK16 peptide transformed into a typical alpha-helix CD spectrum without going through a detectable random-coil intermediate. When increasing the temperature from 4°C to 110°C then cooling back from 110°C to 4°C, there was a hysteresis: the secondary structure from beta-sheet to alpha-helix and then from alpha-helix to beta-sheet occurred. d-EAK16 formed an alpha-helical conformation at pH0.76 and pH12 but formed a beta-sheet at neutral pH. The effects of various pH conditions, ionic strength and denaturing agents were also noted. Since D-form peptides are resistant to natural enzyme degradation, such drastic structural changes may be exploited for fabricating molecular sensors to detect minute environmental changes. This provides insight into the behaviors of self-assembling peptides made of D-amino acids and points the way to designing new peptide materials for biomedical engineering and nanobiotechnology

    A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients

    Get PDF
    Contains fulltext : 87604.pdf (publisher's version ) (Closed access)BACKGROUND: Dendritic cell (DC) vaccination has been shown to induce anti-tumour immune responses in cancer patients, but so far its clinical efficacy is limited. Recent evidence supports an immunogenic effect of cytotoxic chemotherapy. Pre-clinical data indicate that the combination of chemotherapy and immunotherapy may result in an enhanced anti-cancer activity. Most studies have focused on the immunogenic aspect of chemotherapy-induced cell death, but only few studies have investigated the effect of chemotherapeutic agents on the effector lymphocytes of the immune system. METHODS: Here we investigated the effect of treatment with oxaliplatin and capecitabine on non-specific and specific DC vaccine-induced adaptive immune responses. Stage III colon cancer patients receiving standard adjuvant oxaliplatin/capecitabine chemotherapy were vaccinated at the same time with keyhole limpet haemocyanin (KLH) and carcinoembryonic antigen (CEA)-peptide pulsed DCs. RESULTS: In 4 out of 7 patients, functional CEA-specific T-cell responses were found at delayed type hypersensitivity (DTH) skin testing. In addition, we observed an enhanced non-specific T-cell reactivity upon oxaliplatin administration. KLH-specific T-cell responses remained unaffected by the chemotherapy, whereas B-cell responses were diminished. CONCLUSION: The results strongly support further testing of the combined use of specific anti-tumour vaccination with oxaliplatin-based chemotherapy
    • …
    corecore