42 research outputs found

    Population diversification in Staphylococcus aureus biofilms may promote dissemination and persistence.

    Get PDF
    The biofilm mode of growth can lead to diversification of the bacterial population by promoting the emergence of variants. Here we report the identification and characterization of two major subpopulations of morphological variants arising in biofilms of S. aureus. One of these lacked pigmentation (termed white variants; WVs), whilst the other formed colonies on agar that were larger and paler than the parental strain (termed large pale variants; LPVs). WVs were unable to form biofilms, and exhibited increased proteolysis and haemolysis; all phenotypes attributable to loss-of-function mutations identified in the gene encoding the alternative sigma factor, sigB. For LPVs, no differences in biofilm forming capacity or proteolysis were observed compared with the parental strain. Genetic analysis of LPVs revealed that they had undergone mutation in the accessory gene regulator system (agrA), and deficiency in agr was confirmed by demonstrating loss of both colony spreading and haemolytic activity. The observation that S. aureus biofilms elaborate large subpopulations of sigB and agr mutants, both genotypes that have independently been shown to be of importance in staphylococcal disease, has implications for our understanding of staphylococcal infections involving a biofilm component

    Influence of sub-inhibitory antibiotics and flow condition on Staphylococcus aureus ATCC 6538 biofilm development and biofilm growth rate: BioTimer assay as a study model.

    Get PDF
    Staphylococcus biofilm exhibits high antibiotic resistance and therapeutic doses of antibiotics are often sub-inhibitory. Whereas data are available on the effect of sub-inhibitory antibiotics on matrix formation, little is known on their influence on biofilm population. Here, using BioTimer Assay (BTA), a method developed to quantify biofilm population, the influence of sub-inhibitory gentamicin, ofloxacin and azithromycin on Staphylococcus aureus ATCC 6538 biofilm population in flow with respect to static condition was assessed. Antibiotics and flow condition increased biofilm population even if at different extent, depending on the antibiotic molecule. The greatest bacterial population was found in biofilm developed under flow condition in the presence of azithromycin. A significant increase in biofilm matrix was recorded for biofilm developed in the presence of antibiotics in flow with respect to static condition. The growth rates (GRs) of 24-h biofilm developed under the influence of antibiotics and flow condition were also evaluated using BTA and a specific mathematical model. Antibiotics and flow condition affected the GRs of 24-h biofilm even if at different extent. The lowest GR value was recorded for biofilm developed under flow condition in the presence of ofloxacin. Although further studies are needed, our data indicate that antibiotics and flow condition influenced biofilm development by increasing both bacterial population and matrix formation and affected the GRs of the developed biofilm. To the best of our knowledge, BTA is unique in allowing the calculation of the GRs of biofilm and it may be considered to be a useful study model to evaluate the activity of antibiofilm molecules.The Journal of Antibiotics advance online publication, 28 May 2014; doi:10.1038/ja.2014.66
    corecore