63 research outputs found

    Visual change detection on tunnel linings

    Get PDF
    We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide assistance to expert human inspectors carrying out structural health monitoring and maintenance on ageing tunnel networks. A three-dimensional tunnel surface model is first recovered from a set of reference images using Structure from Motion techniques. New images are localised accurately within the model and changes are detected versus the reference images and model geometry. We formulate the problem of detecting changes probabilistically and evaluate the use of different feature maps and a novel geometric prior to achieve invariance to noise and nuisance sources such as parallax and lighting changes. A clustering and ranking method is proposed which efficiently presents detected changes and further improves the inspection efficiency. System performance is assessed on a real data set collected using a low-cost prototype capture device and labelled with ground truth. Results demonstrate that our system is a step towards higher frequency visual inspection at a reduced cost.The authors gratefully acknowledge the support by Toshiba Research Europe.This is the accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00138-014-0648-8

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease

    Get PDF
    Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson's disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson's disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action. © 2010 Macmillan Publishers Limited. All rights reserved

    Omni-pi-tent:an omnidirectional modular robot with genderless docking

    No full text
    This paper presents the design and development of Omni-Pi-tent, a self-reconfigurable modular robot capable of self-repair during continuous motion. This paper outlines the design features necessary for Dynamic Self-repair experiments and how the design of Omni-Pi-tent implements them, we summarise the construction of the first prototype and discuss initial experiments testing some of its key sensors and actuators. In addition, the paper describes experiments in which empirical data from laboratory tests of sensor hardware was integrated into V-REP simulations by means of creating custom sensor models so as to reduce the reality gap.</p
    • …
    corecore