24 research outputs found

    NGTS-6b: An ultrashort period hot-jupiter orbiting an Old K dwarf

    Full text link
    We report the discovery of a new ultra-short period hot Jupiter from the Next Generation Transit Survey. NGTS-6b orbits its star with a period of 21.17 h, and has a mass and radius of 1.330+0.024−0.028MJ and 1.271+0.197−0.188RJ respectively, returning a planetary bulk density of 0.805+0.498−0.283 g cm−3. Conforming to the currently known small population of ultra-short period hot Jupiters, the planet appears to orbit a metal-rich star ([Fe/H]=+0.11 ± 0.09 dex). Photoevaporation models suggest the planet should have lost 5% of its gaseous atmosphere over the course of the 9.6 Gyrs of evolution of the system. NGTS-6b adds to the small, but growing list of ultra-short period gas giant planets, and will help us to understand the dominant formation and evolutionary mechanisms that govern this population

    Quantifying the diffuse continuum contribution of BLR Clouds to AGN Continuum Inter-band Delays

    Full text link
    Disc reverberation mapping of a handful of nearby active galactic nuclei (AGNs) suggests accretion disc sizes that are a factor of a few too large for their luminosities, apparently at odds with the standard model. Here, we investigate the likely contribution to the measured delay signature of diffuse continuum emission arising from broad-line region gas. We start by constructing spherically symmetric pressure-law BLR models (i.e. P(r)∝r−s ) that approximately reproduce the observed emission line fluxes of the strong UV–optical emission lines in the best-studied source, NGC 5548. We then determine the contribution of the diffuse continuum to the measured continuum flux and inter-band delays, accounting for the observed variability behaviour of the ionizing nuclear continuum. Those pressure-law models that approximately reproduce the observed emission-line luminosities unavoidably produce substantial diffuse continuum emission. This causes a significant contamination of the disc reverberation signature (i.e. wavelength-dependent continuum delays). Qualitatively, the diffuse continuum delay signatures produced by our models resemble that observed for NGC 5548, including the deviation of the lag spectrum above that of a simple power law in wavelength, short-ward of the Balmer and Paschen jumps. Furthermore, for reasonable estimates of the BLR covering fraction, the delay induced by diffuse continuum emission causes elevated inter-band delays over the entire UV–optical regime; for these pressure-law models, there are no ‘disc-dominated’ wavelength intervals. Thus, the diffuse continuum contribution must be taken into account in order to correctly infer AGN accretion disc sizes based on inter-band continuum delays

    Detection of a giant white-light flare on an L2.5 dwarf with the Next Generation Transit Survey

    Get PDF
    We present the detection of a V ∼ −10 flare from the ultracool L2.5 dwarf ULAS J224940.13−011236.9 with the Next Generation Transit Survey (NGTS). The flare was detected in a targeted search of late-type stars in NGTS full-frame images and represents one of the largest flares ever observed from an ultracool dwarf. This flare also extends the detection of white-light flares to stars with temperatures below 2000 K. We calculate the energy of the flare to be 3.4+0.9 −0.7 × 1033 erg, making it an order of magnitude more energetic than the Carrington event on the Sun. Our data show how the high-cadence NGTS full-frame images can be used to probe white-light flaring behaviour in the latest spectral types

    Testing the standard fireball model of gamma-ray bursts using late X-ray afterglows measured by Swift

    Full text link
    We show that all X-ray decay curves of γ-ray bursts (GRBs) measured by Swift can be fitted using one or two components, both of which have exactly the same functional form comprised of an early falling exponential phase followed by a power-law decay. The first component contains the prompt γ-ray emission and the initial X-ray decay. The second component appears later, has a much longer duration, and is present for ≈80% of GRBs. It most likely arises from the external shock that eventually develops into the X-ray afterglow. In the remaining ≈20% of GRBs the initial X-ray decay of the first component fades more slowly than the second and dominates at late times to form an afterglow. The temporal decay parameters and γ/X-ray spectral indices derived for 107 GRBs are compared to the expectations of the standard fireball model including a search for possible "jet breaks." For ~50% of GRBs the observed afterglow is in accord with the model, but for the rest the temporal and spectral indices do not conform to the expected closure relations and are suggestive of continued, late, energy injection. We identify a few possible jet breaks, but there are many examples where such breaks are predicted but are absent. The time Ta at which the exponential phase of the second component changes to a final power-law decay afterglow is correlated with the peak of the γ-ray spectrum, Epeak. This is analogous to the Ghirlanda relation, indicating that this time is in some way related to optically observed break times measured for pre-Swift bursts

    Space Telescope and Optical Reverberation Mapping Project. XIII. An Atlas of UV and X-Ray Spectroscopic Signatures of the Disk Wind in NGC 5548

    No full text
    The unusual behavior of the spectral lines of NGC5548 during the STORM campaign demonstrated a missing piece in the structure of AGNs. For a two-month period in the middle of the campaign, the spectral lines showed a deficit in flux and a reduced response to the variations of the UV continuum. This was the first time that this behavior was unequivocally observed in an AGN. Our previous papers explained this as being due to a variable disk wind that acts as a shield and alters the SED. Here, we use Cloudy to create an atlas of photoionization models for a variety of disk winds, in order to study their effects on the SED. We show that the winds have three different cases: Case 1 winds are transparent, fully ionized, and have minimal effects on the intrinsic SED, although they can produce some line emission, especially He II or FeKα. We propose that this is the situation in most of the AGNs. Case 2 winds, which have a He++-He+ ionization front, block part of the XUV continuum but transmit much of the Lyman continuum. They lead to the observed abnormal behavior. Case 3 winds have a H+ ionization front and block much of the Lyman continuum. The results show that the presence of these winds has important effects on the spectral lines of AGNs. They will thus have an effect on the measurements of the black hole mass and the geometry of the AGN. This atlas of spectral simulations can serve as a guide to future reverberation campaigns

    Statistical Signatures of Nanoflare Activity. III. Evidence of Enhanced Nanoflaring Rates in Fully Convective stars as Observed by the NGTS

    No full text
    Abstract Previous examinations of fully convective M-dwarf stars have highlighted enhanced rates of nanoflare activity on these distant stellar sources. However, the specific role the convective boundary, which is believed to be present for spectral types earlier than M2.5V, plays on the observed nanoflare rates is not yet known. Here, we utilize a combination of statistical and Fourier techniques to examine M-dwarf stellar lightcurves that lie on either side of the convective boundary. We find that fully convective M2.5V (and later subtypes) stars have greatly enhanced nanoflare rates compared with their pre-dynamo mode-transition counterparts. Specifically, we derive a flaring power-law index in the region of 3.00 ± 0.20, alongside a decay timescale of 200 ± 100 s for M2.5V and M3V stars, matching those seen in prior observations of similar stellar subtypes. Interestingly, M4V stars exhibit longer decay timescales of 450 ± 50 s, along with an increased power-law index of 3.10 ± 0.18, suggesting an interplay between the rate of nanoflare occurrence and the intrinsic plasma parameters, e.g., the underlying Lundquist number. In contrast, partially convective (i.e., earlier subtypes from M0V to M2V) M-dwarf stars exhibit very weak nanoflare activity, which is not easily identifiable using statistical or Fourier techniques. This suggests that fully convective stellar atmospheres favor small-scale magnetic reconnection, leading to implications for the flare-energy budgets of these stars. Understanding why small-scale reconnection is enhanced in fully convective atmospheres may help solve questions relating to the dynamo behavior of these stellar sources

    A wind-based unification model for NGC 5548: spectral holidays, non-disk emission, and implications for changing-look quasars

    No full text
    The 180-day Space Telescope and Optical Reverberation Mapping campaign on NGC 5548 discovered an anomalous period, the broad-line region (BLR) holiday, in which the emission lines decorrelated from the continuum variations. This is important since the correlation between the continuum-flux variations and the emission-line response is the basic assumption for black hole (BH) mass determinations through reverberation mapping. During the BLR holiday, the high-ionization intrinsic absorption lines also decorrelated from the continuum as a result of variable covering factor of the line of sight (LOS) obscurer. The emission lines are not confined to the LOS, so this does not explain the BLR holiday. If the LOS obscurer is a disk wind, its streamlines must extend down to the plane of the disk and the base of the wind would lie between the BH and the BLR, forming an equatorial obscurer. This obscurer can be transparent to ionizing radiation, or can be translucent, blocking only parts of the SED, depending on its density. An emission-line holiday is produced if the wind density increases only slightly above its transparent state. Both obscurers are parts of the same wind, so they can have associated behavior in a way that explains both holidays. A very dense wind would block nearly all ionizing radiation, producing a Seyfert 2 and possibly providing a contributor to the changing-look AGN phenomenon. Disk winds are very common and we propose that the equatorial obscurers are too, but mostly in a transparent state

    Classifying Exoplanet Candidates with Convolutional Neural Networks: Application to the Next Generation Transit Survey

    Full text link
    Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large number of false positives and a lack of consistency. Previous work has shown that convolutional neural networks (CNN) provide an efficient solution to these problems. Here, we apply a CNN to classify planet candidates from the Next Generation Transit Survey (NGTS). For training data sets we compare both real data with injected planetary transits and fully simulated data, as well as how their different compositions affect network performance. We show that fewer hand labelled light curves can be utilized, while still achieving competitive results. With our best model, we achieve an area under the curve (AUC) score of (95.6±0.2) per cent and an accuracy of (88.5±0.3) per cent on our unseen test data, as well as (76.5±0.4) per cent and (74.6±1.1) per cent in comparison to our existing manual classifications. The neural network recovers 13 out of 14 confirmed planets observed by NGTS, with high probability. We use simulated data to show that the overall network performance is resilient to mislabelling of the training data set, a problem that might arise due to unidentified, low signal-to-noise transits. Using a CNN, the time required for vetting can be reduced by half, while still recovering the vast majority of manually flagged candidates. In addition, we identify many new candidates with high probabilities which were not flagged by human vetters

    The return of the spin period in DW Cnc and evidence of new high state outbursts

    No full text
    DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at ∼38.6 min, however, observations from the 2018 to 2019 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by Next Generation Transit Survey of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal, we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting ∼1 d in DW Cnc with a mean recurrence time of ∼60 d and an amplitude of ∼1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events, we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating

    The return of the spin period in DW Cnc and evidence of new high state outbursts

    Full text link
    DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at ∼38.6 min, however, observations from the 2018 to 2019 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by Next Generation Transit Survey of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal, we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting ∼1 d in DW Cnc with a mean recurrence time of ∼60 d and an amplitude of ∼1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events, we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating
    corecore