9 research outputs found

    Encoding temporal regularities and information copying in hippocampal circuits

    Get PDF
    Discriminating, extracting and encoding temporal regularities is a critical requirement in the brain, relevant to sensory-motor processing and learning. However, the cellular mechanisms responsible remain enigmatic; for example, whether such abilities require specific, elaborately organized neural networks or arise from more fundamental, inherent properties of neurons. Here, using multi-electrode array technology, and focusing on interval learning, we demonstrate that sparse reconstituted rat hippocampal neural circuits are intrinsically capable of encoding and storing sub-second-order time intervals for over an hour timescale, represented in changes in the spatial-temporal architecture of firing relationships among populations of neurons. This learning is accompanied by increases in mutual information and transfer entropy, formal measures related to information storage and flow. Moreover, temporal relationships derived from previously trained circuits can act as templates for copying intervals into untrained networks, suggesting the possibility of circuit-to-circuit information transfer. Our findings illustrate that dynamic encoding and stable copying of temporal relationships are fundamental properties of simple in vitro networks, with general significance for understanding elemental principles of information processing, storage and replication

    Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks

    Get PDF
    Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics

    A neural model of normal and abnormal learning and memory consolidation: adaptively timed conditioning, hippocampus, amnesia, neurotrophins, and consciousness

    No full text
    corecore