22 research outputs found

    NGTS-6b: An ultrashort period hot-jupiter orbiting an Old K dwarf

    Full text link
    We report the discovery of a new ultra-short period hot Jupiter from the Next Generation Transit Survey. NGTS-6b orbits its star with a period of 21.17 h, and has a mass and radius of 1.330+0.024−0.028MJ and 1.271+0.197−0.188RJ respectively, returning a planetary bulk density of 0.805+0.498−0.283 g cm−3. Conforming to the currently known small population of ultra-short period hot Jupiters, the planet appears to orbit a metal-rich star ([Fe/H]=+0.11 ± 0.09 dex). Photoevaporation models suggest the planet should have lost 5% of its gaseous atmosphere over the course of the 9.6 Gyrs of evolution of the system. NGTS-6b adds to the small, but growing list of ultra-short period gas giant planets, and will help us to understand the dominant formation and evolutionary mechanisms that govern this population

    The gravitational redshift of Sirius B

    Full text link
    Einstein’s general theory of relativity predicts that the light from stars will be gravitationally shifted to longer wavelengths. We previously used this effect to measure the mass of the white dwarf Sirius B from the wavelength shift observed in its Hα line based on spectroscopic data from the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST), but found that the results did not agree with the dynamical mass determined from the visual-binary orbit. We have devised a new observing strategy using STIS, where the shift is measured relative to the Hα line of Sirius A rather than comparing it to a laboratory based rest wavelength. Sirius A was observed during the same orbit with HST. This strategy circumvents the systematic uncertainties which have affected previous attempts to measure Sirius B. We measure a gravitational redshift of 80.65 ± 0.77 km s−1. From the measured gravitational redshift and the known radius, we find a mass of 1.017 ± 0.025 M⊙ which is in agreement with the dynamical mass and the predictions of a C/O white dwarf mass–radius relation with a precision of 2.5 per cent

    V1460 Her: a fast spinning white dwarf accreting from an evolved donor star

    Get PDF
    We present time-resolved optical and ultraviolet (UV) spectroscopy and photometry of V1460 Her, an eclipsing cataclysmic variable with a 4.99-h orbital period and an overluminous K5-type donor star. The optical spectra show emission lines from an accretion disc along with absorption lines from the donor. We use these to measure radial velocities, which, together with constraints upon the orbital inclination from photometry, imply masses of M1 = 0.869 ± 0.006 M☉ and M2 = 0.295 ± 0.004 M☉ for the white dwarf and the donor. The radius of the donor, R2 = 0.43 ± 0.002 R☉, is ≈50 per cent larger than expected given its mass, while its spectral type is much earlier than the M3.5 type that would be expected from a main-sequence star with a similar mass. Hubble Space Telescope (HST) spectra show strong N V 1240-Å emission but no C IV 1550-Å emission, evidence for CNO-processed material. The donor is therefore a bloated, overluminous remnant of a thermal time-scale stage of high mass transfer and has yet to reestablish thermal equilibrium. Remarkably, the HST UV data also show a strong 30 per cent peak-to-peak, 38.9 s pulsation that we explain as being due to the spin of the white dwarf, potentially putting V1460 Her in a similar category to the propeller system AE Aqr in terms of its spin frequency and evolutionary path. AE Aqr also features a post-thermal time-scale mass donor, and V1460 Her may therefore be its weak magnetic field analogue since the accretion disc is still present, with the white dwarf spin-up a result of a recent high accretion rate

    Detection of a giant white-light flare on an L2.5 dwarf with the Next Generation Transit Survey

    Get PDF
    We present the detection of a V ∼ −10 flare from the ultracool L2.5 dwarf ULAS J224940.13−011236.9 with the Next Generation Transit Survey (NGTS). The flare was detected in a targeted search of late-type stars in NGTS full-frame images and represents one of the largest flares ever observed from an ultracool dwarf. This flare also extends the detection of white-light flares to stars with temperatures below 2000 K. We calculate the energy of the flare to be 3.4+0.9 −0.7 × 1033 erg, making it an order of magnitude more energetic than the Carrington event on the Sun. Our data show how the high-cadence NGTS full-frame images can be used to probe white-light flaring behaviour in the latest spectral types

    V1460 Her: a fast spinning white dwarf accreting from an evolved donor star

    Full text link
    We present time-resolved optical and ultraviolet (UV) spectroscopy and photometry of V1460 Her, an eclipsing cataclysmic variable with a 4.99-h orbital period and an overluminous K5-type donor star. The optical spectra show emission lines from an accretion disc along with absorption lines from the donor. We use these to measure radial velocities, which, together with constraints upon the orbital inclination from photometry, imply masses of M1 = 0.869 ± 0.006 M☉ and M2 = 0.295 ± 0.004 M☉ for the white dwarf and the donor. The radius of the donor, R2 = 0.43 ± 0.002 R☉, is ≈50 per cent larger than expected given its mass, while its spectral type is much earlier than the M3.5 type that would be expected from a main-sequence star with a similar mass. Hubble Space Telescope (HST) spectra show strong N V 1240-Å emission but no C IV 1550-Å emission, evidence for CNO-processed material. The donor is therefore a bloated, overluminous remnant of a thermal time-scale stage of high mass transfer and has yet to reestablish thermal equilibrium. Remarkably, the HST UV data also show a strong 30 per cent peak-to-peak, 38.9 s pulsation that we explain as being due to the spin of the white dwarf, potentially putting V1460 Her in a similar category to the propeller system AE Aqr in terms of its spin frequency and evolutionary path. AE Aqr also features a post-thermal time-scale mass donor, and V1460 Her may therefore be its weak magnetic field analogue since the accretion disc is still present, with the white dwarf spin-up a result of a recent high accretion rate

    Statistical Signatures of Nanoflare Activity. III. Evidence of Enhanced Nanoflaring Rates in Fully Convective stars as Observed by the NGTS

    No full text
    Abstract Previous examinations of fully convective M-dwarf stars have highlighted enhanced rates of nanoflare activity on these distant stellar sources. However, the specific role the convective boundary, which is believed to be present for spectral types earlier than M2.5V, plays on the observed nanoflare rates is not yet known. Here, we utilize a combination of statistical and Fourier techniques to examine M-dwarf stellar lightcurves that lie on either side of the convective boundary. We find that fully convective M2.5V (and later subtypes) stars have greatly enhanced nanoflare rates compared with their pre-dynamo mode-transition counterparts. Specifically, we derive a flaring power-law index in the region of 3.00 ± 0.20, alongside a decay timescale of 200 ± 100 s for M2.5V and M3V stars, matching those seen in prior observations of similar stellar subtypes. Interestingly, M4V stars exhibit longer decay timescales of 450 ± 50 s, along with an increased power-law index of 3.10 ± 0.18, suggesting an interplay between the rate of nanoflare occurrence and the intrinsic plasma parameters, e.g., the underlying Lundquist number. In contrast, partially convective (i.e., earlier subtypes from M0V to M2V) M-dwarf stars exhibit very weak nanoflare activity, which is not easily identifiable using statistical or Fourier techniques. This suggests that fully convective stellar atmospheres favor small-scale magnetic reconnection, leading to implications for the flare-energy budgets of these stars. Understanding why small-scale reconnection is enhanced in fully convective atmospheres may help solve questions relating to the dynamo behavior of these stellar sources

    Classifying Exoplanet Candidates with Convolutional Neural Networks: Application to the Next Generation Transit Survey

    Full text link
    Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large number of false positives and a lack of consistency. Previous work has shown that convolutional neural networks (CNN) provide an efficient solution to these problems. Here, we apply a CNN to classify planet candidates from the Next Generation Transit Survey (NGTS). For training data sets we compare both real data with injected planetary transits and fully simulated data, as well as how their different compositions affect network performance. We show that fewer hand labelled light curves can be utilized, while still achieving competitive results. With our best model, we achieve an area under the curve (AUC) score of (95.6±0.2) per cent and an accuracy of (88.5±0.3) per cent on our unseen test data, as well as (76.5±0.4) per cent and (74.6±1.1) per cent in comparison to our existing manual classifications. The neural network recovers 13 out of 14 confirmed planets observed by NGTS, with high probability. We use simulated data to show that the overall network performance is resilient to mislabelling of the training data set, a problem that might arise due to unidentified, low signal-to-noise transits. Using a CNN, the time required for vetting can be reduced by half, while still recovering the vast majority of manually flagged candidates. In addition, we identify many new candidates with high probabilities which were not flagged by human vetters

    The return of the spin period in DW Cnc and evidence of new high state outbursts

    Full text link
    DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at ∼38.6 min, however, observations from the 2018 to 2019 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by Next Generation Transit Survey of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal, we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting ∼1 d in DW Cnc with a mean recurrence time of ∼60 d and an amplitude of ∼1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events, we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating

    The return of the spin period in DW Cnc and evidence of new high state outbursts

    No full text
    DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at ∼38.6 min, however, observations from the 2018 to 2019 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by Next Generation Transit Survey of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal, we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting ∼1 d in DW Cnc with a mean recurrence time of ∼60 d and an amplitude of ∼1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events, we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating

    Multi-wavelength observations of the EUV variable metal-rich white dwarf GD 394

    Get PDF
    We present new Hubble Space Telescope (HST) ultraviolet and ground-based optical observations of the hot, metal-rich white dwarf GD 394. Extreme-ultraviolet (EUV) observations in 1992-1996 revealed a 1.15d periodicity with a 25 percent amplitude, hypothesised to be due to metals in a surface accretion spot. We obtained phase-resolved HST/Space Telescope Imaging Spectrograph (STIS) high-resolution far-ultraviolet (FUV) spectra of GD 394 that sample the entire period, along with a large body of supplementary data. We find no evidence for an accretion spot, with the flux, accretion rate and radial velocity of GD 394 constant over the observed timescales at ultraviolet and optical wavelengths. We speculate that the spot may have no longer been present when our observations were obtained, or that the EUV variability is being caused by an otherwise undetected evaporating planet. The atmospheric parameters obtained from separate fits to optical and ultraviolet spectra are inconsistent, as is found for multiple hot white dwarfs. We also detect non-photospheric, high-excitation absorption lines of multiple volatile elements, which could be evidence for a hot plasma cocoon surrounding the white dwarf
    corecore