232 research outputs found

    Development of an evidence-based checklist for the detection of drug related problems in type 2 diabetes

    Get PDF
    Objective To develop an evidence-based checklist to identify potential drug related problems (PDRP) in patients with type 2 diabetes. Setting The evidence based checklist was applied to records of ambulatory type 2 diabetes patients in New South Wales, Australia. Method After comprehensive review of the literature, relevant medication groups and potential drug related problems in type 2 diabetes were identified. All the relevant information was then structured in the form of a checklist. To test the utility of the evidence-based checklist a cross-sectional retrospective study was conducted. The PDRP checklist was applied to the data of 148 patients with established type 2 diabetes and poor glycaemic control. The range and extent of DRPs in this population were identified, which were categorized using the PCNE classification. In addition, the relationship between the total as well as each category of DRPs and several of the patients’ clinical parameters was investigated. Main outcome measure: Number and category of DRPs per patient. Results The PDRP checklist was successfully developed and consisted of six main sections. 682 potential DRPs were identified using the checklist, an average of 4.6 (SD = 1.7) per patient. Metabolic and blood pressure control in the study subjects was generally poor: with a mean HbA1c of 8.7% (SD = 1.5) and mean blood pressure of 139.8 mmHg (SD = 18.1)/81.7 mmHg (SD = 11.1). The majority of DRPs was recorded in the categories ‘therapy failure’ (n = 264) and ‘drug choice problem’ (n = 206). Potentially non-adherent patients had a significantly higher HbA1c than patients who adhered to therapy (HbA1c of 9.4% vs. 8.5%; P = 0.01). Conclusion This is the first tool developed specifically to detect potential DRPs in patients with type 2 diabetes. It was used to identify DRPs in a sample of type 2 diabetes patients and demonstrated the high prevalence of DRPs per patient. The checklist may assist pharmacists and other health care professionals to systematically identify issues in therapy and management of their type 2 diabetes patients and enable earlier intervention to improve metabolic control

    GeneWaltz--A new method for reducing the false positives of gene finding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying protein-coding regions in genomic sequences is an essential step in genome analysis. It is well known that the proportion of false positives among genes predicted by current methods is high, especially when the exons are short. These false positives are problematic because they waste time and resources of experimental studies.</p> <p>Methods</p> <p>We developed GeneWaltz, a new filtering method that reduces the risk of false positives in gene finding. GeneWaltz utilizes a codon-to-codon substitution matrix that was constructed by comparing protein-coding regions from orthologous gene pairs between mouse and human genomes. Using this matrix, a scoring scheme was developed; it assigned higher scores to coding regions and lower scores to non-coding regions. The regions with high scores were considered candidate coding regions. One-dimensional Karlin-Altschul statistics was used to test the significance of the coding regions identified by GeneWaltz.</p> <p>Results</p> <p>The proportion of false positives among genes predicted by GENSCAN and Twinscan were high, especially when the exons were short. GeneWaltz significantly reduced the ratio of false positives to all positives predicted by GENSCAN and Twinscan, especially when the exons were short.</p> <p>Conclusions</p> <p>GeneWaltz will be helpful in experimental genomic studies. GeneWaltz binaries and the matrix are available online at <url>http://en.sourceforge.jp/projects/genewaltz/</url>.</p

    A Global Clustering Algorithm to Identify Long Intergenic Non-Coding RNA - with Applications in Mouse Macrophages

    Get PDF
    Identification of diffuse signals from the chromatin immunoprecipitation and high-throughput massively parallel sequencing (ChIP-Seq) technology poses significant computational challenges, and there are few methods currently available. We present a novel global clustering approach to enrich diffuse CHIP-Seq signals of RNA polymerase II and histone 3 lysine 4 trimethylation (H3K4Me3) and apply it to identify putative long intergenic non-coding RNAs (lincRNAs) in macrophage cells. Our global clustering method compares favorably to the local clustering method SICER that was also designed to identify diffuse CHIP-Seq signals. The validity of the algorithm is confirmed at several levels. First, 8 out of a total of 11 selected putative lincRNA regions in primary macrophages respond to lipopolysaccharides (LPS) treatment as predicted by our computational method. Second, the genes nearest to lincRNAs are enriched with biological functions related to metabolic processes under resting conditions but with developmental and immune-related functions under LPS treatment. Third, the putative lincRNAs have conserved promoters, modestly conserved exons, and expected secondary structures by prediction. Last, they are enriched with motifs of transcription factors such as PU.1 and AP.1, previously shown to be important lineage determining factors in macrophages, and 83% of them overlap with distal enhancers markers. In summary, GCLS based on RNA polymerase II and H3K4Me3 CHIP-Seq method can effectively detect putative lincRNAs that exhibit expected characteristics, as exemplified by macrophages in the study

    Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo

    Full text link
    [EN] Cucurbit crops are economically important worldwide. One of the most serious threats to cucurbit production is Zucchini yellow mosaic virus (ZYMV). Several resistant accessions were identified in Cucurbita moschata and their resistance was introgressed into Cucurbita pepo. However, the mode of inheritance of ZYMV resistance in C. pepo presents a great challenge to attempts at introgressing resistance into elite germplasm. The main goal of this work was to analyze the inheritance of ZYMV resistance and to identify markers associated with genes conferring resistance. An Illumina GoldenGate assay allowed us to assess polymorphism among nine squash genotypes and to discover six polymorphic single-nucleotide polymorphisms (SNPs) between two near-isogenic lines, "True French" (susceptible to ZYMV) and Accession 381e (resistant to ZYMV). Two F-2 and three BC1 populations obtained from crossing the ZYMV-resistant Accession 381e with two susceptible ones, the zucchini True French and the cocozelle "San Pasquale," were assayed for ZYMV resistance. Molecular analysis revealed an approximately 90% association between SNP1 and resistance, which was confirmed using High Resolution Melt (HRM) and a CAPS marker. Co-segregation up to 72% in populations segregating for resistance was observed for two other SNP markers that could be potentially linked to genes involved in resistance expression. A functional prediction of proteins involved in the resistance response was performed on genome scaffolds containing the three SNPs of interest. Indeed, 16 full-length pathogen recognition genes (PRGs) were identified around the three SNP markers. In particular, we discovered that two nucleotide-binding site leucine-rich repeat (NBS-LRR) protein-encoding genes were located near the SNP1 marker. The investigation of ZYMV resistance in squash populations and the genomic analysis performed in this work could be useful for better directing the introgression of disease resistance into elite C. pepo germplasm.This work was supported by the Ministry of University and Research (GenHORT project).Capuozzo, C.; Formisano, G.; Iovieno, P.; Andolfo, G.; Tomassoli, L.; Barbella, M.; Picó Sirvent, MB.... (2017). Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Molecular Breeding. 37(8). https://doi.org/10.1007/s11032-017-0698-5S378Addinsoft (2007) XLSTAT, Analyse de données et statistique avec MS Excel. Addinsoft, NYAndolfo G, Ercolano MR (2015) Plant innate immunity multicomponent model. Front Plant Sci 6:987Andolfo G, Sanseverino W, Rombauts S et al (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237Andolfo G, Ferriello F, Tardella L et al (2014) Tomato genome-wide transcriptional responses to fusarium wilt, and tomato mosaic virus. PLoS One 9:e94963Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12:104Brown RN, Bolanos-Herrera A, Myers JR, Jahn MM (2003) Inheritance of resistance to four cucurbit viruses in Cucurbita moschata. Euphytica 129:253–258Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8:346–354Cipollini D (2008) Constitutive expression of methyl jasmonate-inducible responses delays reproduction and constrains fitness responses to nutrients in Arabidopsis thaliana. Evol Ecol 24:59–68Cohen R, Hanan A, Paris HS (2003) Single-gene resistance to powdery mildew in zucchini squash (Cucurbita pepo). Euphytica 130:433–441Collum TD, Padmanabhan MS, Hsieh YC, Culver JN (2016) Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading. Proc Natl Acad Sci U S A 113:E2740–E2749Desbiez C, Lecoq H (1997) Zucchini yellow mosaic virus. Plant Pathol 46:809–829Ercolano MR, Sanseverino W, Carli P, Ferriello F, Frusciante L (2012) Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects. Plant Cell Rep 31:973–985Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, Nuez F, Picó B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 13:80Formisano G, Paris HS, Frusciante L, Ercolano MR (2010) Commercial Cucurbita pepo squash hybrids carrying disease resistance introgressed from Cucurbita moschata have high genetic similarity. Plant Genet Resour 8:198–203Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Report 13:207–209Gal-On A (2007) Zucchini yellow mosaic virus: insect transmission and pathogenicity—the tails of two proteins. Mol Plant Pathol 8:139–150Gilbert-Albertini F, Lecoq H, Pitrat M, Nicolet JL (1993) Resistance of Cucurbita moschata to watermelon mosaic virus type 2 and its genetic relation to resistance to zucchini yellow mosaic virus. Euphytica 69:231–237Gómez P, Rodríguez-Hernández AM, Moury B, Aranda MA (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol 125:1–22Gong L, Stift G, Kofler R, Pachner M, Lelley T (2008a) Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet 117:37–48Gong L, Pachner M, Kalai K, Lelley T (2008b) SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome 51:878–887Iovieno P, Andolfo G, Schiavulli A, Catalano D, Ricciardi L, Frusciante L et al. (2015) Structure, evolution and functional inference on the MildewLocusO (MLO) gene family in three cultivated Cucurbitaceae. BMC Genomics 16:1112. doi: 10.1186/s12864-015-2325-3Ishibashi K, Kezuka Y, Kobayashi C, Kato M, Inoue T, Nonaka T et al (2014) Structural basis for the recognition–evasion arms race between Tomato mosaic virus and the resistance gene Tm-1. PNAS 111:E3486–E3495Lecoq H, Pitrat M, Clément M (1981) Identification et caractérisation d’un potyvirus provoquant la maladie du rabougrissement jaune du melon. Agronomie 1:827–834Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper—Phytophthora capsici Leonian. Theor Appl Genet 93:503–511Levi A, Thomas CE, Newman M, Zhan X, Xu Y, Wehner TC (2003) Massive preferential segregation and nonrandom assortment of linkage-groups produce quasi-linkage in an F2 mapping population of watermelon. Hortscience 38:782Lisa V, Lecoq H (1984) Zucchini yellow mosaic virus. Descriptions of Plant Viruses, Commonwealth Mycological Institute and Association of Applied Biologists 282Lisa V, Boccardo G, D'Agostino G, Dellavalle G, d’Aquilio M (1981) Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71:667–672MacQueen A, Bergelson J (2016) Modulation of R-gene expression across environments. J Exp Bot 67:2093–2105Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220Munger HM, Provvidenti R (1987) Inheritance of resistance to zucchini yellow mosaic virus in Cucurbita moschata. Cucurbit Genet Coop Rep 10:8–81Nameth ST, Dodds JA, Paulus AO, Laemmlen FF (1986) Cucurbit viruses of California: an ever-changing problem. Plant Dis 70:8–12Ott J, Wang J, Leal SM (2015) Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16(5):275–284Pachner M, Lelley T (2004) Different genes for resistance to zucchini yellow mosaic virus (ZYMV) in Cucurbita moschata. In: Lebeda A, Paris HS (eds) Progress in cucurbit genetics and breeding research: Proceedings of Cucurbitaceae 2004. Palacky University, Olomouc (Czech Republic), pp 237–243Pachner M, Paris HS, Lelley T (2011) Genes for resistance to zucchini yellow mosaic in tropical pumpkin. J Hered 102:330–335Pachner M, Paris HS, Winkler J, Lelley T (2015) Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breed 134:121–128Paris HS (1986) A proposed subspecific classification for Cucurbita pepo. Phytologia 61:133–138Paris HS (2001) Characterization of the Cucurbita pepo collection at the Newe Ya‘ar Research Center, Israel. Plant Genet Resour Newsl 126:41–45Paris HS (2008) Summer squash. In: Prohens J, Nuez F (eds) Handbook of plant breeding, Vegetables I: 351–379Paris HS, Cohen S (2000) Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo. Ann Appl Biol 136:209–214Paris HS, Cohen S, Burger Y, Joseph R (1988) Single-gene resistance to zucchini yellow mosaic virus in Cucurbita moschata. Euphytica 37:27–29Peakall PE, Smouse R (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539Sakamoto T, Deguchi M, Brustolini OJ, Santos AA, Silva FF, Fontes EP (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol 12:229Sanseverino W, Ercolano MR (2012) In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res Notes 5:678Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739Teare MD, Santibanez Koref MF (2014) Linkage analysis and the study of Mendelian disease in the era of whole exome and genome sequencing. Brief Funct Genomics 13(5):378–383Valkonen JPT, Wiegmann K, Hämäläinen JH, Marczewski W, Watanabe KN (2008) Evidence for utility of the same PCR-based markers for selection of extreme resistance to Potato virus Y controlled by Rysto of Solanum stoloniferum derived from different sources. Ann Appl Biol 152:121–130Wessel-Beaver L (2005) Cultivar and germplasm release. Release of ‘Soler’ tropical pumpkin. J Agric Univ P R 89:263–266Whitaker TW, Davis GN (1962) Cucurbits: botany, cultivation and utilization. Interscience, New York, pp 105–116Whitaker TW, Robinson RW (1986) Squash breeding. In: Bassett MJ (ed) Breeding vegetable crops. Avi, Westport, pp 209–242Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407Xu R, Zhang S, Huang J, Zheng C (2013) Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa. PLoS One 8:e78982Ye G, Smith KF (2008) Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. Int J Plant Breed 2:1–10Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T (2007) A consensus map for Cucurbita pepo. Mol Breed 20:375–38

    Genome-Wide Association between Branch Point Properties and Alternative Splicing

    Get PDF
    The branch point (BP) is one of the three obligatory signals required for pre-mRNA splicing. In mammals, the degeneracy of the motif combined with the lack of a large set of experimentally verified BPs complicates the task of modeling it in silico, and therefore of predicting the location of natural BPs. Consequently, BPs have been disregarded in a considerable fraction of the genome-wide studies on the regulation of splicing in mammals. We present a new computational approach for mammalian BP prediction. Using sequence conservation and positional bias we obtained a set of motifs with good agreement with U2 snRNA binding stability. Using a Support Vector Machine algorithm, we created a model complemented with polypyrimidine tract features, which considerably improves the prediction accuracy over previously published methods. Applying our algorithm to human introns, we show that BP position is highly dependent on the presence of AG dinucleotides in the 3′ end of introns, with distance to the 3′ splice site and BP strength strongly correlating with alternative splicing. Furthermore, experimental BP mapping for five exons preceded by long AG-dinucleotide exclusion zones revealed that, for a given intron, more than one BP can be chosen throughout the course of splicing. Finally, the comparison between exons of different evolutionary ages and pseudo exons suggests a key role of the BP in the pathway of exon creation in human. Our computational and experimental analyses suggest that BP recognition is more flexible than previously assumed, and it appears highly dependent on the presence of downstream polypyrimidine tracts. The reported association between BP features and the splicing outcome suggests that this, so far disregarded but yet crucial, element buries information that can complement current acceptor site models

    Hypertension and type 2 diabetes: What family physicians can do to improve control of blood pressure - an observational study

    Get PDF
    Background: The prevalence of type 2 diabetes is rising, and most of these patients also have hypertension, substantially increasing the risk of cardiovascular morbidity and mortality. The majority of these patients do not reach target blood pressure levels for a wide variety of reasons. When a literature review provided no clear focus for action when patients are not at target, we initiated a study to identify characteristics of patients and providers associated with achieving target BP levels in community-based practice. Methods: We conducted a practice- based, cross-sectional observational and mailed survey study. The setting was the practices of 27 family physicians and nurse practitioners in 3 eastern provinces in Canada. The participants were all patients with type 2 diabetes who could understand English, were able to give consent, and would be available for follow-up for more than one year. Data were collected from each patient’s medical record and from each patient and physician/nurse practitioner by mailed survey. Our main outcome measures were overall blood pressure at target (< 130/80), systolic blood pressure at target, and diastolic blood pressure at target. Analysis included initial descriptive statistics, logistic regression models, and multivariate regression using hierarchical nonlinear modeling (HNLM). Results: Fifty-four percent were at target for both systolic and diastolic pressures. Sixty-two percent were at systolic target, and 79% were at diastolic target. Patients who reported eating food low in salt had higher odds of reaching target blood pressure. Similarly, patients reporting low adherence to their medication regimen had lower odds of reaching target blood pressure. Conclusions: When primary care health professionals are dealing with blood pressures above target in a patient with type 2 diabetes, they should pay particular attention to two factors. They should inquire about dietary salt intake, strongly emphasize the importance of reduction, and refer for detailed counseling if necessary. Similarly, they should inquire about adherence to the medication regimen, and employ a variety of patient-oriented strategies to improve adherence
    corecore