89 research outputs found

    Chryseobacterium indologenes infection in a newborn: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p><it>Chryseobacterium indologenes </it>is an uncommon human pathogen. Most infections have been detected in hospitalized patients with severe underlying diseases who had indwelling devices implanted. Infection caused by <it>C. indologenes </it>in a newborn has not been previously reported.</p> <p>Case presentation</p> <p>We present a case of ventilator-associated pneumonia caused by <it>C. indologenes </it>in a full-term Caucasian newborn baby boy with congenital heart disease who was successfully treated with piperacillin-tazobactam.</p> <p>Conclusion</p> <p><it>C. indologenes </it>should be considered as a potential pathogen in newborns in the presence of invasive equipment or treatment with long-term broad-spectrum antibiotics. Appropriate choice of effective antimicrobial agents for treatment is difficult because of the unpredictability and breadth of antimicrobial resistance of these organisms, which often involves resistance to many of the antibiotics chosen empirically for serious Gram-negative infections.</p

    Cross-tissue immune cell analysis reveals tissue-specific adaptations and clonal architecture in humans

    Get PDF
    Despite their crucial role in health and disease, our knowledge of immune cells within human tissues remains limited. Here, we surveyed the immune compartment of 15 tissues of six deceased adult donors by single-cell RNA sequencing and paired VDJ sequencing. To systematically resolve immune cell heterogeneity across tissues, we developed CellTypist, a machine learning tool for rapid and precise cell type annotation. Using this approach, combined with detailed curation, we determined the tissue distribution of 45 finely phenotyped immune cell types and states, revealing hitherto unappreciated tissue-specific features and clonal architecture of T and B cells. In summary, our multi-tissue approach lays the foundation for identifying highly resolved immune cell types by leveraging a common reference dataset, tissue-integrated expression analysis and antigen receptor sequencing. One Sentence Summary We provide an immune cell atlas, including antigen receptor repertoire profiling, across lymphoid and non-lymphoid human tissues

    Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides

    Get PDF
    As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues1,2, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here, we developed a continuous flow culture apparatus (Nutrostat) for maintaining proliferating cells in low nutrient media for long periods of time and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNAi screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the upregulation of OXPHOS normally caused by glucose limitation as a result of either mtDNA mutations in Complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, anti-diabetic drugs that inhibit OXPHOS3,4, when cancer cells are grown in low glucose or as tumour xenografts. Remarkably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of Complex I function5. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors

    Cells of the human intestinal tract mapped across space and time

    Get PDF
    The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung’s disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease

    A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts

    Get PDF
    Since its commercial introduction three-quarters of a century ago, fluid catalytic cracking has been one of the most important conversion processes in the petroleum industry. In this process, porous composites composed of zeolite and clay crack the heavy fractions in crude oil into transportation fuel and petrochemical feedstocks. Yet, over time the catalytic activity of these composite particles decreases. Here, we report on ptychographic tomography, diffraction, and fluorescence tomography, as well as electron microscopy measurements, which elucidate the structural changes that lead to catalyst deactivation. In combination, these measurements reveal zeolite amorphization and distinct structural changes on the particle exterior as the driving forces behind catalyst deactivation. Amorphization of zeolites, in particular, close to the particle exterior, results in a reduction of catalytic capacity. A concretion of the outermost particle layer into a dense amorphous silica–alumina shell further reduces the mass transport to the active sites within the composite

    Immobilization of enzymes on supports activated with glutaraldehyde: A very simple immobilization protocol

    No full text
    In this chapter, we describe different approaches for the utilization of glutaraldehyde in protein immobilization. First, we focus on the covalent attachment of proteins to glutaraldehyde-activated matrixes. We describe conditions for the synthesis of such supports and provide an example of the immobilization and stabilization of a fructosyltransferase. We also describe how glutaraldehyde may be used for the cross-linking of protein–protein aggregates and protein adsorbed onto amino-activated matrixes. In these cases, glutaraldehyde bridges either two lysine groups from different protein molecules or a lysine from the protein structure and an amine group from the support. Examples of cross-linking are given for the immobilization of a D-amino acid oxidase on different amino-activated supports.Peer reviewe
    corecore