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Abstract

Despite their crucial role in health and disease, our knowledge of immune cells within human 

tissues remains limited. Here, we surveyed the immune compartment of 16 tissues from 12 adult 

donors by single-cell RNA sequencing and VDJ sequencing generating a dataset of 360,000 cells. 

To systematically resolve immune cell heterogeneity across tissues, we developed CellTypist, a 

machine learning tool for rapid and precise cell type annotation. Using this approach, combined 

with detailed curation, we determined the tissue distribution of finely phenotyped immune cell 

types, revealing hitherto unappreciated tissue-specific features and clonal architecture of T and B 

cells. Our multi-tissue approach lays the foundation for identifying highly resolved immune cell 

types by leveraging a common reference dataset, tissue-integrated expression analysis and antigen 

receptor sequencing.

The immune system is a dynamic and integrated network made up of many different 

cell types distributed across the body that act together to maintain tissue homeostasis and 

mediate protective immunity. In recent years, a growing appreciation of immune ontogeny 

and diversity across tissues has emerged. For example, we have gained insights into how 

macrophages derived in embryogenesis contribute to the unique adaptation of tissue-resident 

myeloid cells, such as Langerhans cells in the skin, microglia in the brain and Kupffer cells 

in the liver (1–3). Other populations, such as innate lymphoid cells (ILCs), including natural 

killer (NK) cells and non-conventional (NKT, MAIT and γδ) T cells, have circulating 

counterparts but are highly enriched at barrier/mucosal sites where they mediate tissue 

defense and repair (4). In addition, following resolution of an immune response, antigen-

specific, long-lived tissue-resident memory T cells (TRMs) persist in diverse sites, where 

they provide optimal protection against secondary infections (reviewed in (5–7)).

Studies in mice have revealed the central role of tissue immune responses in protective 

immunity, anti-tumor immunity, and tissue repair; however, human studies have largely 

focussed on peripheral blood as the most accessible site. Given that circulating immune 

cells comprise only a subset of the entire immune cell landscape, understanding human 

immunity requires a comprehensive assessment of the properties and features of immune 

cells within and across tissues. Recent progress in the analysis of tissue immune cells have 

implemented organ-focused approaches (8–12), while use of tissues obtained from organ 

donors allows for analysis of immune cells across multiple sites across an individual (13–

19). We previously reported single-cell RNA sequencing (scRNA-seq) analysis of T cells in 

three tissues from two donors (20), identifying tissue-specific signatures. However, despite 

the effort to assemble murine (21) and human (22, 23) multi-tissue atlases, large-scale cross-

tissue scRNA-seq studies that investigate tissue-specific features of innate and adaptive 

immune compartments have not been reported.
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Furthermore, a fundamental challenge of increasingly large single cell transcriptomics 

data sets is cell type annotation, including identifying rare cell subsets and distinguishing 

novel discoveries from previously described cell populations. Currently available automated 

annotation workflows leverage organ-focussed studies and lack a comprehensive catalogue 

of all cell types found across tissues. Therefore, a single unified approach is required in 

order to provide an in-depth dissection of immune cell type and immune state heterogeneity 

across tissues.

To address these needs, we comprehensively profiled immune cell populations isolated from 

a wide range of donor-matched tissues from 12 deceased individuals, generating nearly 

360,000 single cell transcriptomes. To systematically annotate multi-tissue immune cells we 

developed CellTypist, a machine learning framework for cell type prediction initially trained 

on data from studies across 20 human tissues (see Supplementary Text) and then updated 

and extended by integrating immune cells from our dataset.

Results

CellTypist: a pan-tissue immune database and a tool for automated cell type annotation

To systematically assess immune cell type heterogeneity across human tissues, we 

performed scRNA-seq on 16 different tissues from 12 deceased organ donors (Fig. 1, A 

and B, and table S1). The tissues studied included primary (bone marrow) and secondary 

(spleen, lung-draining and mesenteric lymph nodes) lymphoid organs, mucosal tissues (gut 

and lung), as well as blood and liver. When available, we also included additional donor-

matched samples from tissues such as thymus, skeletal muscle and omentum. Immune cells 

were isolated from tissues as detailed in the Methods. After stringent quality control, we 

obtained a total of 357,211 high quality cells, of which 329,762 belonged to the immune 

compartment (fig. S1, A and B).

Robust cell type annotation remains a major challenge in single-cell transcriptomics. To 

computationally predict cellular heterogeneity in our dataset, we developed CellTypist (24), 

a cell type database, that in its current form is focused on immune cells, that provides a 

directly interpretable pipeline for the automatic annotation of scRNA-seq data (Fig. 1C). 

One of the unique and valuable aspects of CellTypist is that its training set encompasses 

a wide range of immune cell types across tissues. This is of critical importance given 

that immune compartments are shared across tissues, warranting accurate and automated 

cell annotation in an organ-agnostic manner. In brief, to develop CellTypist we integrated 

cells from 20 different tissues from 19 reference datasets (fig. S2) where we had deeply 

curated and harmonised cell types at two knowledge-driven levels of hierarchies (figs. S3 

to S8). This was followed by a machine learning framework to train these cells using 

logistic regression with stochastic gradient descent learning (see methods). Performance of 

the derived models, as measured by the precision, recall and global F1-score, reached ~0.9 

for cell type classification at both the high- and low-hierarchy levels (Fig. 1C and fig. S9, 

A and B). Notably, representation of a given cell type in the training data was a major 

determinant of its prediction accuracy (fig. S9C), implying higher model performance can 

be achieved by incorporating additional datasets. Moreover, CellTypist prediction was robust 
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to differences between training and query datasets including gene expression sparseness (fig. 

S10) and batch effects (fig. S11).

First we applied CellTypist’s high-hierarchy (i.e. low-resolution, 32 cell types) classifier 

to our cross-tissue dataset (Fig. 1D), and found 15 major cell populations (fig. S1C). 

At this level of resolution, clear compositional patterns emerged in lymphoid versus non-

lymphoid tissues, and within the lymphoid tissues between spleen versus lymph nodes, 

and appeared not to be driven by differences in dissociation protocols (fig. S12). As the 

training datasets of CellTypist contained hematopoietic tissues with definitive annotations 

for progenitor populations, the classifier was able to resolve several progenitors including 

hematopoietic stem cells and multipotent progenitors (HSC/MPP), promyelocytes, early 

megakaryocytes, pre-B and pro-B cells. Furthermore, CellTypist clearly resolved monocytes 

and macrophages, which often form a transcriptomic continuum in scRNA-seq datasets due 

to their functional plasticity. Thus CellTypist was successfully able to identify major groups 

of cell populations with different abundances in our dataset (fig. S1C).

To automatically annotate fine-grained immune sub-populations, we next applied the low-

hierarchy (high-resolution, 91 cell types and subtypes) classifier, which was able to classify 

cells into 43 specific subtypes including subsets of T cells, B cells, ILCs, and mononuclear 

phagocytes (Fig. 1E). This revealed a high degree of heterogeneity within the T cell 

compartment, not only distinguishing between αβ and γδ T cells, but also between CD4+ 

and CD8+ T cell subtypes and their more detailed effector and functional phenotypes. 

Specifically, the CD4+ T cell cluster was classified into helper, regulatory and cytotoxic 

subsets, and the CD8+ T cell clusters contained unconventional T cell subpopulations such 

as MAIT cells. In the B cell compartment, a clear distinction was observed between naive 

and memory B cells. Moreover, CellTypist revealed three distinct subsets of dendritic cells 

(DC) - DC1, DC2 and migratory DCs (migDCs) (25, 26), again highlighting the granularity 

CellTypist can achieve. This fine-grained dissection of each compartment also allowed for 

the cross-validation and consolidation of cell types by examining the expression of marker 

genes derived from CellTypist models in cells from our dataset (fig. S1D).

In summary, we generated an in-depth map of immune cell populations across human 

tissues, and developed a framework for automated annotation of immune cell types and 

subtypes. CellTypist produced fine-grained annotations on our multi-tissue and multi-lineage 

dataset, and its performance, as assessed on multiple metrics, was comparable or better 

relative to other label-transfer methods with minimal computational cost (figs. S13 and 

S14). This approach allowed us to refine the description of many cell subtypes such as 

the progenitors and dendritic cell compartments at full transcriptomic breadth, resolving 43 

cell states in total across our dataset. This automated annotation forms the basis for further 

cross-tissue comparisons of cell compartments in the sections below.

Tissue-restricted features of mononuclear phagocytes

Mononuclear phagocytes, including monocytes, macrophages and dendritic cells, are critical 

for immune surveillance and tissue homeostasis. Automatic annotation by CellTypist 

identified eight populations in this compartment (fig. S15A). To explore macrophage 

heterogeneity further, we built on CellTypist’s annotation by performing additional manual 
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curation, which revealed further heterogeneity within the macrophages (Fig. 2A and fig. 

S15B). The identities of these cells were supported by expression of well-established marker 

genes (Fig. 2B), and by markers independently identified from CellTypist models (fig. 

S15C). Moreover, existence of these cell types was cross-validated, and thus consolidated, 

in the training datasets of CellTypist (fig. S15D), as well as in myeloid cells from two 

additional studies of the human intestinal tract (27) (fig. S15E) and lung (28) (fig. S15F).

Among macrophages, lung-resident cells constituted the majority, and were classified into 

two major clusters: (i) alveolar macrophages expressing GPNMB and TREM2, markers 

that have been related to alveolar macrophages (29) and disease-associated macrophages 

(30), respectively; and (ii) intermediate macrophages with unique expression of TNIP3 (Fig. 

2, B to D). TNIP3 (TNFAIP3-interacting protein 3) binds to A20, encoded by TNFAIP3, 

and inhibits TNF, IL-1 and LPS-induced NF-kB activation (31). Its expression in lung 

macrophages may be related to underlying pathology as it was primarily detected in one 

donor (A29), a multitrauma donor with significant lung contusions. Notably, this population 

also expressed the monocyte-recruiting chemokine CCL2 (Fig. 2B), providing a means of 

replenishing the lung macrophage pool.

Other macrophage subsets in our data also showed a high degree of tissue restriction 

(Fig. 2D). Erythrophagocytic macrophages, including red pulp macrophages and Kupffer 

cells, mainly populated the spleen and liver, as expected, and shared high expression of 

CD5L, SCL40A1 and the transcription factor SPIC (32). Notably, a number of macrophages 

from lymph nodes clustered together with erythrophagocytic macrophages, pointing to the 

presence of a small number of iron-recycling macrophages in lymph nodes (Fig. 2D). 

Another macrophage population specifically present in the gut expressed CD209 (encoding 

DC-SIGN) and IGF1, markers that have been previously reported in mature intestinal 

macrophages and M2-like macrophages, respectively (33, 34). Lastly, monocytes were 

clearly grouped in two major subgroups, classical and non-classical monocytes, which 

differed in the expression of CD14, FCGR3A and CX3CR1 as well as in their tissue 

distribution (Fig. 2, A to D).

Among dendritic cells, DC1 expressed XCR1 and CLEC9A, consistent with their identity 

as conventional DCs (DC1), specialised for cross-presentation of antigens (Fig. 2B). 

Conventional DC2s expressed CD1C and CLEC10A, and migDCs were CCR7+ LAMP3+. 

CCR7 is upregulated in tissue DCs following TLR or FcγR ligation (35, 36), enabling 

migration towards CCL19/21-expressing lymphatic endothelium and stromal cells in the T 

cell zone of lymph nodes (37, 38). Consistent with this, we observed a marked enrichment 

of CCR7+ migDCs in lung-draining and mesenteric lymph nodes (Fig. 2D). Interestingly, 

migDCs showed upregulation of AIRE, PDLIM4 and EBI3 in lymph nodes (Fig. 2E). Extra-

thymic expression of the autoimmune regulator AIRE has been reported in humans (39, 40), 

however, its functional role in secondary lymphoid organs remains poorly understood and is 

a matter of intense research (41–43). We validated the presence of migDCs in lung-draining 

lymph nodes by immunofluorescence (fig. S16A) and AIRE expression by single-molecule 

FISH (smFISH) (Fig. 2F). In addition, another subpopulation of migDCs found in lung and 

lung-draining lymph nodes upregulated CRLF2 (encoding TLSPR), chemokines (CCL22, 
CCL17), CSF2RA and GPR157 (Fig. 2E). TLSPR is involved in the induction of Th2 
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responses in asthma (44). Expression of these genes in lung DCs was also observed in 

published scRNA-seq datasets (45, 46) (fig. S16, B and C). These observations suggest that 

dendritic cell activation coincides with the acquisition of tissue-specific markers that differ 

depending on the local microenvironment.

Overall, our analysis of the myeloid compartment has revealed shared and tissue-restricted 

features of mononuclear phagocytes, including alveolar macrophages in the lung, iron-

recycling macrophages mostly localized in the spleen, and subtypes of migratory dendritic 

cells.

B cell subsets and immunoglobulin repertoires across tissues

B cells comprise progenitors in the bone marrow, developmental states in lymphoid tissues 

and terminally differentiated memory and plasma cell states in lymphoid and non-lymphoid 

tissues. They play a central role in humoral immunity via the production of antibodies 

tailored to specific body sites. We first annotated the B cells using CellTypist and obtained 

six populations (fig. S17A). Manual curation revealed further heterogeneity in memory B 

cells and plasma cells, identifying 11 cell types in total (Fig. 3A and fig. S17B). As with the 

myeloid compartment, we cross-checked and verified these cell types in CellTypist training 

datasets (fig. S17, C and D) and in two independent immune datasets from gut (27) and lung 

(28) (fig. S17, E and F).

Naive B cells expressed TCL1A and were primarily found in lymphoid tissues (Fig. 3, B 

to D). In addition, we identified two populations of germinal center B cells, expressing 

AICDA and BCL6, that differed in their proliferative states (marked by MKI67). Of note, 

we did not find differential expression of dark zone and light zone marker genes in these 

two populations, probably reflecting limited germinal center activity in our adult donors. 

Moreover, these germinal center populations were present in lymph nodes and diverse gut 

regions (Fig. 3, C and D), presumably representing Peyer’s patches. Within memory B cells, 

which were characterized by expression of the B-cell lineage markers (MS4A1, CD19) and 

TNFRSF13B, we found a transcriptomically distinct cluster positive for ITGAX, TBX21 
and FCRL2, encoding CD11c, T-bet and the Fc receptor-like protein 2, respectively (Fig. 

3B). CD11c+T-bet+ B cells, also known as age-associated B cells (ABCs), have been 

reported in autoimmunity and aging (47–49), and likely correspond to this ITGAX+ memory 

B cell population. Notably, unlike conventional memory B cells, they showed relatively low 

expression of CR2 (encoding CD21) and CD27 (Fig. 3B). Interestingly, this subset was 

mainly present in the liver and bone marrow, while in secondary lymphoid organs, it was 

primarily found in the spleen (confirmed by flow cytometry and immunofluorescence (Fig. 

3, C and D, and fig. S18). This data deepens our understanding of the phenotype of this 

non-classical subtype of memory B cells, and their tissue distribution.

We uncovered two populations of plasmablasts and plasma cells marked by expression of 

CD38, XBP1 and SDC1. Whereas the former expressed MKI67 and were found in the 

spleen, liver, bone marrow and blood, the latter expressed the integrin alpha-8-encoding 

gene ITGA8 and the adhesion molecule CERCAM and were enriched in the jejunum and 

liver (Fig. 3, B to D). ITGA8+ plasma cells have recently been reported in the context of an 

analysis of bone marrow plasma cells (50), and are likely a long-lived plasma cell population 
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that is quiescent and tissue-resident. Here we expand their tissue distribution to the liver and 

gut, and describe their specific clonal distribution pattern below.

B cells have an additional source of variability due to VDJ recombination, somatic 

hypermutation and class-switching, which can relate to cell phenotype. Therefore, we 

performed targeted enrichment and sequencing of B-cell receptor (BCR) transcripts to assess 

isotypes, hypermutation levels and clonal architecture of the B cell populations identified 

above. This analysis revealed an isotype and subclass usage pattern that related to cellular 

phenotype (fig. S19A). As expected, naive B cells mainly showed a subclass preference for 

IgM and IgD. Interestingly, while evidence of class switching to IgA1 and IgG1 was seen 

within memory B cells (including ABCs), plasmablasts and plasma cells also showed class 

switching to IgA2 and IgG2.

To determine to what extent this isotype subclass bias correlated with the tissue of origin, we 

assessed each cell state independently (requiring a minimum cell count of 50). Memory B 

cells showed a bias towards IgA1 in the mesenteric lymph nodes, and towards IgA2 in the 

ileum, where Peyer’s patches are found (Fig. 3E). In the plasma cell compartment, we found 

an even more striking preference for IgA2 in the gut region (specifically in the jejunum 

lamina propria), consistent with the known dominance of this isotype at mucosal surfaces 

(Fig. 3E). Of note, plasma cells in the bone marrow, liver and spleen were composed of 

over 20% IgG2 subclass. With more limited numbers, we report isotype distributions across 

tissues for other B cell populations (fig. S19, B and C). ABCs were dominated by IgM in 

both the spleen and lung-draining lymph nodes, consistent with previous reports (51).

Somatic hypermutation (SHM) levels were, as expected, lowest in naive B cells and 

highest in plasma cells (fig. S19D). Between isotypes and subclasses, SHM did not differ 

significantly. Nonetheless, there was a tendency towards higher mutation rates in the distal 

classes IgG2, IgG4 and IgA2, which are downstream from the IgH locus and can thus 

accumulate more mutations during sequential switching (52) (Fig. 3F). We also explored 

the occurrence of sequential class switching events in our data by assessing the isotype 

frequency among expanded clonotypes (>10 cells). Mixed isotype clones were rare in our 

data (fig. S19E).

Next, we evaluated the distribution of expanded clones across tissues and cell types, and 

found three major groups of clones - present in only two tissues, three to four tissues or 

five or more tissues, respectively (Fig. 3G), similar to previously reported patterns of B cell 

clonal tissue distribution (53). While the clones restricted to two tissues, typically between 

the spleen and the liver or bone marrow, were enriched in plasma cells, those distributed 

across more than five tissues, including lymph nodes, were over-represented in memory B 

cells. Together, these findings suggest that tissue-restricted clones may represent long-term 

immunological memory maintained by long-lived plasma cells resident in the bone marrow 

and spleen as well as liver in our data.

Overall, we characterized nine cell states in the B cell compartment, and gained insights 

from in-depth characterisation of both naive and memory B cell as well as plasma cell 

subsets. We identified distinct clonal distribution patterns for the more tissue-restricted 
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long-lived quiescent plasma cells versus the broad tissue distribution of classical memory B 

cell clones.

scRNA-seq analysis of T cells and innate lymphocytes reveals lineage and tissue-specific 
subsets

For annotation of the T cell/innate lymphocyte compartment, CellTypist identified 18 

cell types (fig. S20A). After manual inspection, these clusters were further divided into 

additional subtypes (e.g. for cytotoxic T cells) (Fig. 4A and fig. S20B). As described 

above for the myeloid and B cell compartments, identities of the derived cell types were 

cross-validated in the immune compartment of the CellTypist training datasets (fig. S20, C 

and D) and the two independent studies of gut (27) and lung (28) (fig. S20, E and F).

Naive/central memory CD4+ T cells were transcriptionally close to naive CD8+ T cells 

as defined by high expression of CCR7 and SELL and were mainly found in lymphoid 

sites (Fig. 4B). Other CD4+ T cells identified included follicular helper T cells (Tfh) 

expressing CXCR5, regulatory T cells (Tregs) expressing FOXP3 and CTLA4, effector 

memory CD4+ T cells, and tissue-resident memory Th1 and Th17 cells expressing CCR9, 
ITGAE and ITGA1 found largely in intestinal sites (jejunum and ileum) and lungs (Fig. 

4, B to D). Within the memory CD8+ T compartment, we found three major subsets: 

Trm_gut_CD8 (resident memory T cells, Trm), Tem/emra_CD8 (effector memory, Tem; 

effector memory re-expressing CD45RA, Temra) and Trm/em_CD8. These subsets were 

characterized by differential expression of the chemokine receptors CCR9 and CX3CR1 
and the activation marker CRTAM (Fig. 4B). The Trm_gut_CD8 population (CCR9+) 

expressed the tissue-residency markers ITGAE and ITGA1, encoding CD103 and CD49a 

respectively and localized to intestinal sites (Fig. 4B). By contrast, the Tem/Temra_CD8 

population expressing CX3CR1 was found in blood-rich sites (blood, bone marrow, lung, 

and liver) and was excluded from lymph nodes and gut (Fig. 4, C and D), consistent with 

previous flow cytometry analysis of Temra cells (54), and results showing CX3CR1+CD8+ 

T cells as blood-confined and absent from thoracic duct lymph (55). The Trm/em_CD8 

population expressed high levels of CRTAM, a gene previously shown to be expressed by 

Trm (56) and was found in spleen, bone marrow, and to a lesser extent in lymph nodes 

and lungs. This may be a resident population more prevalent in lymphoid sites (16). We 

validated and mapped the Trm/em_CD8 population using smFISH in the liver (Fig. 4E) and 

lung-draining lymph nodes (Fig. 4F). Furthermore, we validated all three memory CD8+ 

T cell populations at the protein level by flow cytometry of cells purified from human 

spleen (fig. S21). Although we could validate CRTAM at the RNA level by smFISH, the 

protein could not be detected without stimulation, suggesting that CRTAM is subject to 

post-translational regulation upon T-cell receptor (TCR) activation. These three distinct 

populations represent different states of tissue adaptation and maturation between effector 

memory and tissue-resident T cell memory states.

We also detected invariant T cell subsets such as MAIT cells, characterised by expression of 

TRAV1-2 and SLC4A10, and two populations of γδ T cells: Trm_Tgd and Tgd_CRTAM+. 

The CCR9+ Trm_Tgd population populated the gut and expressed the tissue-residency 

markers ITGAE and ITGA1, whereas the Tgd_CRTAM+ population overexpressed 
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CRTAM, IKZF2 (encoding HELIOS) and the integrin molecule ITGAD (encoding CD11d) 

and was found primarily in the spleen, bone marrow and liver (Fig. 4, B to D, and fig. 

S22, A and B). We validated the latter population by quantitative PCR (qPCR) of flow 

sorted CD3+TCRγδ+ and CD3+TCRαβ+ cells from cryopreserved spleen samples from 

three donors (fig. S22C, D). As a small fraction of ɑβ T cells, marked by low expression 

of CD52 and CD127, were also noted to express ITGAD, the CD3+TCRαβ population was 

split into CD52-CD127- and CD52+CD127+ subpopulations. In keeping with our scRNA-

seq data, ITGAD expression was high in CD3+TCRγδ and CD52-CD127-CD3+TCRαβ, 

providing additional evidence for the specific expression of this integrin alpha subunit in this 

subpopulation of γδ T cells.

Lastly, NK cells in our data were represented by two clusters with high expression of 

either FCGR3A (encoding CD16) or NCAM1 (encoding CD56). We also defined an ILC3 

population within a small cluster mixed with NK cells, via expression of markers including 

PCDH9 (Fig. 4, A and B). Analyses of the tissue distribution of these populations revealed 

that, whereas the majority of CD4+ T and ILC3 cells were located in the lymph nodes and 

to some extent in the spleen, cytotoxic T and NK cells were more abundant in the bone 

marrow, spleen and non-lymphoid tissues (Fig. 4, C and D).

TCR repertoire analysis shows clonal expansion and distribution patterns within and 
across tissues

To understand T cell-mediated protection in more depth, we analysed T cell clonal 

distribution in a subset of the data within different tissues of a single individual and across 

different individuals. Chain pairing analysis showed that cells from the T cell clusters mostly 

contained a single pair of chains (50-60%), with orphan (5-20%) and extra (5-10%) chains 

present in small fractions of cells (fig. S23A). Notably, the frequency of extra α chains 

(extra VJ) was higher than that of β chains (extra VDJ), potentially due to more stringent 

and multi-layered allelic exclusion mechanisms at the TCRβ locus compared to TCRα (57). 

As expected, the NK and ILC clusters held no productive TCR chains. Within the γδ T 

cell clusters, only a small proportion had a productive TCR chain, which may result from 

cytotoxic T cells co-clustering with γδ T cells. We also carried out γδ TCR sequencing in 

selected spleen, bone marrow and liver samples. The γδ TCR sequencing data was subjected 

to a customized analysis pipeline that we developed and optimised based on cellranger 

followed by contig re-annotation with dandelion (see Materials and Methods), facilitating 

the full recovery of γδ chains in our data. This analysis confirmed that the majority of 

productive γδ TCR chains originated from the ITGAD-expressing γδ T cells (fig. S23B), 

supporting the robust identification of this population. The Trm_Tgd population could not be 

confirmed by γδ TCR sequencing due to the lack of sample availability.

We next examined V(D)J gene usage in relation to T cell identity. In the MAIT population, 

we detected significant enrichment of TRAV1-2, as expected (fig. S23C). Selecting only 

the TRAV1-2+ cells (MAIT cluster and other clusters) revealed a notable tissue-specific 

distribution of TRAJ segments with TRAJ33 in spleen and liver, TRAJ12 in liver and 

TRAJ29/TRAJ36 in jejunum (fig. S23D). This suggests that there may be different antigens 

for MAIT cells in the spleen, liver and gut corresponding to the different metabolomes in 
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these tissues. In addition, full analysis of the TCR repertoire of the MAIT cells revealed 

previously unappreciated diversity of V segment usage in the beta chain (fig. S23D).

We then defined clonally related cells on the basis of identical CDR3 nucleotide sequences 

to investigate their TCR repertoires. Using this approach, we found that clonally expanded 

cells were primarily from the resident memory T cell compartment, including the Th1/

Th17 populations mentioned above (Fig. 4G and fig. S23E). As expected, these clonotypes 

were restricted to single individuals and within an individual they were distributed across 

tissues and subsets (Fig. 4H and fig. S23, F to H). We found a small number of isolated 

CD4+ T cell clones that shared Tregs and effector T cell phenotypes, possibly due to 

low levels of plasticity or due to (trans)differentiation from the same naive precursor cell 

in the periphery (fig. S23H). Focusing on the most expanded clonotypes (>20 cells), the 

majority were widespread across five or more tissues, supporting the systemic nature of 

tissue-resident immune memory (Fig. 4G). Moreover, we found that several clonotypes 

present across tissues consisted of a mixture of cells from the Tem/emra_CD8 and Trm/

em_CD8 populations (fig. S23H), suggesting that a single naive CD8+ T cell precursor can 

give rise to diverse cytotoxic T cell states, which harbour immune memory across multiple 

non-lymphoid tissues, emphasizing the plasticity of phenotype and location within a clone.

In summary, we have described 18 T/innate cell states in our data by integrating CellTypist 

logistic regression models, manual curation and V(D)J sequencing. This has yielded insights 

into the MAIT cell compartment and its antigen receptor repertoire distribution that differed 

between spleen, liver and gut. For the cytotoxic T cell memory compartment there was 

broad sharing of clones across gut regions for Trm_gut_CD8, and mixed Tem/emra_CD8 

and Trm/em_CD8 T cell clonotypes with broad tissue distributions.

A cross-tissue updatable reference of immune cell types and states

After focusing on individual immune compartments, we next took a combined approach in 

order to better understand the immune landscape of selected tissues. As shown in Fig. 5A, 

each tissue has its own immune neighborhood, for example, while spleen and lymph nodes 

are rich in B cells, composition of their myeloid compartment varies. In particular, a large 

population of erythrophagocytic macrophages, known as red pulp macrophages, are evident 

in the spleen (in keeping with their role in red blood cell turnover), whereas lymph nodes are 

rich in dendritic cells. As expected, bone marrow uniquely contains progenitor populations. 

Furthermore lung and liver contain significant numbers of monocytes, including CX3CR1+ 
nonclassical monocytes whereas these cells are absent from the jejunum, perhaps reflecting 

different degrees of vascularization. In contrast, the jejunum has an abundance of resident 

memory T cells (CD8+ T cells and Th1/Th17) as well as plasma cells.

Our long-term vision for CellTypist is to provide a reference atlas with deeply curated cell 

types publicly available to the community. Therefore, via a semi-automatic process, we fed 

the identities of the 41 immune cell types identified in our dataset (including both shared and 

novel cell type labels) back into CellTypist, demonstrating how CellTypist can be updated 

and improved over time. Combined with the initial 91 cell types and states included in the 

reference datasets, CellTypist now comprises a total of 101 annotated cell types (Fig. 5B).
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Discussion

Here, we present a multi-tissue study of immune cells across the human body within diverse 

organ donors. By sampling multiple organs from the same individuals, which allows for 

robust control of age, sex, medical history, drug exposure and sampling backgrounds, we 

reveal tissue-specific expression patterns across the myeloid and lymphoid compartments.

We also introduce CellTypist, a publicly available and updatable framework for automated 

immune cell type annotation that, in addition to identifying major cell types, is able to 

perform fine-grained cell subtype annotation - normally a time-consuming process that 

requires expert knowledge. We developed CellTypist by integrating and curating data 

obtained from 19 studies performed across a range of tissues, with in-depth immune cell 

analysis comprising 91 harmonized cell type labels. However, as demonstrated here, for 

example in the γδ T cell compartment, manual curation following automated annotation 

still has a role to play in revealing specific cell subtypes that may be absent from the 

database/training set. To reduce the need for this, in the longer term, the CellTypist models 

will be periodically updated and extended to include further immune and non-immune 

sub-populations as more data become available.

Within the myeloid compartment, macrophages showed the most prominent features of 

tissue specificity. Erythrophagocytic macrophages in the liver and spleen shared features 

related to iron-recycling (58) with macrophages in other locations, such as the mesenteric 

lymph nodes, suggesting that macrophages participate in iron metabolism across a range of 

tissues. In addition, we characterized subsets of migratory dendritic cells (CCR7+) revealing 

specific expression of CRLF2, CSF2RA and GPR157 in the lung and lung-draining 

lymph nodes, and expression of AIRE in the mesenteric and lung-draining lymph nodes. 

These migratory dendritic cell states are interesting targets for future in depth functional 

characterisation in the context of allergy, asthma and other related pathologies (59, 60).

In the lymphoid compartment, we combined single-cell transcriptome and VDJ analysis, 

which allowed the phenotype of adaptive immune cells to be dissected using complementary 

layers of single cell genomics data. Of note, we detected a subset of memory B cells 

expressing ITGAX (CD11c) and TBX21 (T-bet) that resemble ABCs previously reported 

to be expanded in ageing (48), following malaria vaccination (61) and in systemic lupus 

erythematosus (SLE) patients (62). In our data, these B cells did not show clonal expansion 

and at least 50% showed IgM subclass, suggesting that they may be present at low levels 

in healthy tissues and expand upon challenge as well as ageing. BCR analysis revealed 

isotype usage biased towards IgA2 in gut plasma cells, which may be related to structural 

differences (63) or higher resistance to microbial degradation as compared to IgA1 (64).

In the T cell compartment, our results provided insights into the heterogeneity of T cell 

subtypes and their tissue adaptations. Notably, we identified subsets of CD4+ Trm based on 

functional capacity for IFN-γ or IL-17 production that were mostly localized to intestinal 

sites, analogous to mouse CD4+ Trm generated from IL-17-producing effector T cells in the 

gut (65). We also identified different subsets of CD8+ Trm including a gut-adapted subset 

expressing CCR9, which mediates homing to intestinal sites via binding to CCL25 (66) 
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and another Trm-like subset more targeted to lymphoid sites. TCR clone sharing between 

memory subtypes of CD8+ T cells suggests their origin from a common precursor, or their 

differentiation or conversion during migration or maintenance, such as conversion of effector 

memory T cells (Tem) to resident memory T cells (Trm) (56). We also identified distinct 

subsets of γδ T cells based on tissue-specific gene expression patterns, showing distinct 

integrin gene expression and tissue distributions.

In summary, using this dataset of nearly 360,000 single cell transcriptomes (of which 

~330,000 were immune cells) from donor-matched tissues from 12 deceased individuals, we 

have shown how a combination of CellTypist-based automated annotation, expert-driven 

cluster analysis and antigen receptor sequencing can synergize to dissect specific and 

functionally relevant aspects of immune cells across the human body. We have revealed 

previously unrecognized features of tissue-specific immunity in the myeloid and lymphoid 

compartments, and have provided a comprehensive framework for future cross-tissue 

cell type analysis. Further investigation of human tissue-resident immunity is needed to 

determine the effect of important covariates such as underlying critical illness, donor age 

and gender as well as considering the immune cell activation status, to gain a defining 

picture of how human biology influences immune functions. Our deeply characterised 

cross-tissue immune cell dataset has implications for the engineering of cells for therapeutic 

purposes and addressing cells to intended tissue locations, and for understanding tissue-

specific features of infection as well as distinct modes of vaccine delivery to tissues.

Materials and methods

Tissue acquisition, processing and single-cell sequencing

Tissue was obtained from deceased organ donors via the Cambridge Biorepository for 

Translational Medicine (CBTM, https://www.cbtm.group.cam.ac.uk/), REC 15/EE/0152. 

Detailed sample locations taken can be found in Fig. 1 and protocols are described in detail 

in Supplementary Materials. Additional tissue samples were from Columbia University 

and were obtained from deceased organ donors at the time of organ acquisition for 

clinical transplantation through an approved protocol and material transfer agreement with 

LiveOnNY.

Six donors were processed with a uniform protocol at Cambridge university where solid 

tissues were cut into small pieces, then homogenised with enzymatic digestion for 2x 15 

minute heating/mixing steps at 37°C. The remaining six donors were subjected to a tissue 

adapted protocol with the aim of improving immune cell recovery, and this protocol was 

harmonised as closely as possible between the two collection sites.

For scRNA-seq experiments, single cells were loaded onto the channels of a Chromium chip 

(10x Genomics). cDNA synthesis, amplification, and sequencing libraries were generated 

using either the Single Cell 5′ Reagent (v1 and v2) (Cambridge University) or 3′ Reagent 

(v3) (Columbia University) Kit. TCRαβ, BCR and TCRγδ paired VDJ libraries were 

prepared from samples made with the 5′ Reagent kit. All libraries were sequenced on either 

a HiSeq 4000 or NovaSeq 6000 instrument.
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scRNA-seq and scVDJ-seq data analysis

scRNA-seq data was aligned and quantified using the cellranger software (version 6.1.1, 

10x Genomics Inc.). Cells from hashtagged samples were demultiplexed using Hashsolo 

(67). Cells with fewer than 1,000 UMI counts and 600 detected genes were excluded. 

Doublets were detected using Scrublet (68). Downstream analysis from data normalization 

to graph-based clustering were performed using Scanpy (version 1.6.0) (69), with details 

described in Supplementary Materials. Data integration was done using BBKNN (70) and 

scVI (71), and the results were compared using kBET (72).

scTCR-seq and scBCR-seq data were aligned and quantified using the cellranger-vdj 

software (version 2.1.1 and 4.0, respectively). For TCRγδ we implemented a customized 

pipeline (https://sc-dandelion.readthedocs.io/en/latest/notebooks/gamma_delta.html) due to 

cellranger being tuned towards alpha/beta TCR chains. scTCR-seq analysis including 

productive TCR chain pairing and clonotype detection was performed using the scirpy 

package (73).

CellTypist

Details of CellTypist, including cross-data cell type label harmonization and automated cell 

annotation, can be found in Supplementary Text. Briefly, immune cells from 20 tissues 

of 19 studies were collected and harmonised into consistent labels. These cells were 

split into equal-sized mini-batches, and these batches were sequentially trained by the l2-

regularized logistic regression using stochastic gradient descent learning. Feature selection 

was performed to choose the top 300 genes from each cell type, and the union of these genes 

were supplied as the input for a second round of training.

Single molecule FISH, flow cytometry, qPCR and Immunofluorescence

For single molecule FISH, samples were run using the RNAscope 2.5 LS fluorescent 

multiplex assay (automated). Slides were imaged on the Perkin Elmer Opera Phenix High-

Content Screening System, in confocal mode with 1 μm z-step size, using 20X (NA 0.16, 

0.299 μm/pixel) and 40X (NA 1.1, 0.149 μm/pixel) water-immersion objectives.

For flow cytometry, mononuclear cells (MNCs) were either stained ex vivo or post activation 

with PMA+I for two hours. Cells were stained with the live/dead marker Zombie Aqua for 

10 minutes at room temperature, and then washed with PBS+0.5%FCS, with the CD8 and B 

cell panels of antibodies.

qPCR was performed in three spleen samples. Cells were stained with the live/dead marker 

Zombie Aqua for 10 minutes at room temperature, and then washed with PBS+0.5%FCS, 

followed by staining with the antibodies at 4°C for 45 minutes. Cell sorting was performed 

on a BD Fusion 4 laser sorter and RNA was extracted using a Zymo Research RNA micro 

kit.

For immunofluorescence, samples were fixed in 1% paraformaldehyde for 24 hours 

followed by 8 hours in 30% sucrose in PBS, and were stained for 2h at RT with the 

appropriate antibodies, washed three times in PBS and mounted in Fluoromount-G® 
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(Southern Biotech). Images were acquired using a TCS SP8 (Leica, Milton Keynes, UK) 

confocal microscope.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

We provide an immune cell atlas of human innate and adaptive immune cells across 

lymphoid, mucosal, and exocrine sites revealing tissue-specific compositions and 

features, and introduce CellTypist, a machine learning tool for rapid and precise cell 

type annotation.
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Fig. 1. Automated annotation of immune cells across human tissues using CellTypist.
(A) Schematic showing sample collections of human lymphoid and non-lymphoid tissues 

and their assigned tissue name acronyms. (B) Schematic of single-cell transcriptome 

profiling and paired sequencing of αβ TCR, γδ TCR and BCR variable regions. (C) 

Workflow of CellTypist including data collection, processing, model training and cell type 

prediction (upper panel). Performance curves showing the F1 score at each iteration of 

training with mini-batch stochastic gradient descent for high- and low-hierarchy CellTypist 

models, respectively (lower panel). The black curve represents the median F1 score averaged 

across the individual F1 scores of all predicted cell types. (D) UMAP visualization of the 

immune cell compartment colored by tissues. Note jejunum samples in (A) were further split 

into epithelial (JEJEPI) and lamina propria fractions (JEJLP). (E) As in (D), but colored by 

predicted cell types using CellTypist.
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Fig. 2. Myeloid compartment across tissues.
(A) UMAP visualization of the cell populations in the myeloid compartment. (B) Dot plot 

for expression of marker genes of the identified myeloid populations. Color represents 

maximum-normalized mean expression of cells expressing marker genes, and size represents 

the percentage of cells expressing these genes. (C) UMAP visualization of the tissue 

distribution in the myeloid compartment. (D) Heatmap showing the distribution of each 

myeloid cell population across different tissues. Cell numbers are normalized within each 

tissue and later calculated as proportions across tissues. Only tissues containing more than 

50 myeloid cells in at least two donors were included. Asterisks mark significant enrichment 

in a given tissue relative to the remaining tissues (poisson regression stratified by donors, p 
< 0.05 after Benjamini-Hochberg (BH) correction). (E) Violin plot for genes differentially 

expressed in migratory dendritic cells across tissues. Color represents maximum-normalized 

mean expression of cells expressing marker genes. (F) smFISH visualisation of ITGAX, 
CCR7 and AIRE transcripts, validating the AIRE+ migratory dendritic cells in lung-draining 

lymph nodes.
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Fig. 3. B cell compartment across tissues.
(A) UMAP visualization of the cell populations in the B cell compartment. (B) Dot plot for 

expression of marker genes of the identified B cell populations. Color represents maximum-

normalized mean expression of cells expressing marker genes, and size represents the 

percentage of cells expressing these genes. (C) UMAP visualization of the tissue distribution 

in the B cell compartment. (D) Heatmap showing the distribution of each B cell population 

across different tissues. Cell numbers are normalised within each tissue and later calculated 

as proportions across tissues. Only tissues containing more than 50 B cells in at least 

two donors were included. Asterisks mark significant enrichment in a given tissue relative 

to the remaining tissues (poisson regression stratified by donors, p < 0.05 after Benjamini-

Hochberg (BH) correction). (E) Stacked bar plots showing the isotype distribution per tissue 

within memory B cells and the plasma cells. (F) Violin plot of the hypermutation frequency 

on the IgH chain across isotypes. Significant difference among IgG4, IgG2 and IgG1, as 

well as between IgA2 and IgA1 is marked by asterisks (wilcoxon rank sum test, p < 0.05). 
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(G) Scatterpie plot showing the tissue distribution and B cell subsets of expanded clonotypes 

(>10 cells). Each vertical line represents one clonotype.
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Fig. 4. Tissue compartmentalization and site-specific adaptations of T cells and innate lymphoid 
cells (ILCs).
(A) UMAP visualization of T cells and ILCs across human tissues colored by cell types. 

(B) Dot plot for expression of marker genes of the identified immune populations. Color 

represents maximum-normalized mean expression of cells expressing marker genes, and size 

represents the percentage of cells expressing these genes. (C) UMAP visualization of T 

cells and ILCs colored by tissues. (D) Heatmap showing the distribution of each T cell or 

ILC population across different tissues. Cell numbers are normalized within each tissue and 

later calculated as proportions across tissues. Only tissues containing more than 50 ILC/T 

cells in at least two donors were included. Asterisks mark significant enrichment in a given 

tissue relative to the remaining tissues (Poisson regression stratified by donors, p < 0.05 after 

Benjamini-Hochberg (BH) correction). (E and F) smFISH visualisation of CD3D, CD8A 
and CRTAM transcripts, validating the tissue-resident memory CD8+ T cell population in 
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the liver and lung-draining lymph nodes. (G) TCR repertoire analysis of T cells across 

tissues. Stacked bar plot shows the fraction of cells in a given cluster binned by clonotype 

size. (H) Heatmap showing the repertoire overlap between expanded clones (>1 cell) across 

tissues and donors as determined by jaccard distance.
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Fig. 5. A cross-tissue updatable reference of immune cell types and cell states.
(A) Heatmap showing the distribution of manually curated cell types across selected tissues. 

Cell numbers are normalized within each tissue and later calculated as proportions across 

tissues. Asterisks mark significant enrichment in a given tissue relative to the remaining 

tissues (Poisson regression stratified by donors, p < 0.05 after Benjamini-Hochberg (BH) 

correction). (B) Workflow for the iterative update of CellTypist through the periodic 

incorporation of curated cell type labels.
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