12 research outputs found

    Nutrient stress alters the glycosylation status of LGR5 resulting in reduced protein stability and membrane localisation in colorectal tumour cells: implications for targeting cancer stem cells

    Get PDF
    BACKGROUND LGR5 is an important marker of intestinal stem cells and performs its vital functions at the cell membrane. Despite the importance of LGR5 to both normal and cancer stem cell biology, it is not known how microenvironmental stress affects the expression and subcellular distribution of the protein. METHODS Nutrient stress was induced through glucose starvation. Glycosylation status was assessed using endoglycosidase or tunicamycin treatment. Flow cytometry and confocal microscopy were used to assess subcellular distribution of LGR5. RESULTS Glucose deprivation altered the glycosylation status of LGR5 resulting in reduced protein stability and cell surface expression. Furthermore, inhibiting LGR5 glycosylation resulted in depleted surface expression and reduced localisation in the cis-Golgi network. CONCLUSIONS Nutrient stress within a tumour microenvironment has the capacity to alter LGR5 protein stability and membrane localisation through modulation of LGR5 glycosylation status. As LGR5 surface localisation is required for enhanced Wnt signalling, this is the first report to show a mechanism by which the microenvironment could affect LGR5 function

    LGR5 expression is regulated by EGF in early colorectal adenomas and governs EGFR inhibitor sensitivity.

    Get PDF
    BACKGROUND LGR5 serves as a co-receptor for Wnt/β-catenin signalling and marks normal intestinal stem cells; however, its role in colorectal cancer (CRC) remains controversial. LGR5 cells are known to exist outside the stem cell niche during CRC progression, and the requirement for epidermal growth factor (EGF) signalling within early adenomas remains to be fully elucidated. METHODS Epidermal growth factor and gefitinib treatments were performed in EGF-responsive LGR5 early adenoma RG/C2 cells. 2D growth assays were measured using an IncuCyte. LGR5 or MEK1/2 silencing studies were executed using siRNA and LGR5 expression was assessed by qRT-PCR and immunoblotting. Ki67 level and cell cycle status were analysed by flow cytometry. RESULTS Epidermal growth factor suppresses expression of LGR5 at both the transcript and protein level in colorectal adenoma and carcinoma cells. Suppression of LGR5 reduces the survival of EGF-treated adenoma cells by increasing detached cell yield but also inducing a proliferative state, as evidenced by elevated Ki67 level and enhanced cell cycle progression. Repression of LGR5 further increases the sensitivity of adenoma cells to EGFR inhibition. CONCLUSIONS LGR5 has an important role in the EGF-mediated survival and proliferation of early adenoma cells and could have clinical utility in predicting response of CRC patients to EGFR therapy

    5-aminosalicylic acid inhibits stem cell function in human adenoma derived cells: Implications for chemoprophylaxis in colorectal tumorigenesis

    Get PDF
    Background: Most colorectal cancers (CRC) arise sporadically from precursor lesions: colonic polyps. Polyp resection prevents progression to CRC. Risk of future polyps is proportional to the number and size of polyps detected at screening, allowing identification of high-risk individuals who may benefit from effective chemoprophylaxis. We aimed to investigate the potential of 5-aminosalicylic acid (5-ASA), a medication used in the treatment of ulcerative colitis, as a possible preventative agent for sporadic CRC. Methods: Human colorectal adenoma (PC/AA/C1, S/AN/C1 and S/RG/C2), transformed adenoma PC/AA/C1/SB10 and carcinoma cell lines (LS174T and SW620) were treated with 5-ASA. The effect on growth in two- and three-dimensional (3D) culture, β-catenin transcriptional activity and on cancer stemness properties of the cells were investigated. Results: 5-ASA was shown, in vitro, to inhibit the growth of adenoma cells and suppress β-catenin transcriptional activity. Downregulation of β-catenin was found to repress expression of stem cell marker LGR5 (leucine-rich G protein-coupled receptor-5) and functionally suppress stemness in human adenoma and carcinoma cells using 3D models of tumorigenesis. Conclusions: 5-ASA can suppress the cancer stem phenotype in adenoma-derived cells. Affordable and well-tolerated, 5-ASA is an outstanding candidate as a chemoprophylactic medication to reduce the risk of colorectal polyps and CRC in those at high risk

    Clinical Electromyographycal Study on Gamma System -Selective Gamma fibere Blocking with Procaine Anesthesia-

    Get PDF
    It was observed in the preliminary study that there was diminution of the H reflex in the calf muscles with hypoactive ankle jerk after gamma fibre blocking with procaine injected in the tibial nerve. Although no remarkable change on motor power of the muscle was seen. The present investigation deals with mechanism of this diminution of the H reflex and with regulation of motor unit discharge during voluntary contraction after gamma fiber blocking. 1. Diminution of the H reflex. Amplitude of H reflex response which had been diminished after gamma fibere blocking was recovered by voluntary contraction of the calf muscles. There was little change observed in the latent period of the H reflex between the experimental states with and without voluntary contraction. Excitability of the motoneurone measured by the H reflex recovery curve with conditioning and test stimulus indicated that there was a marked increase of excitability of the motoneurone during voluntary contraction of the muscles. These results suggest that the diminution of the H reflex after gamma fibre blocking is due to decreased motoneurone excitability which is a result of diminished afferent impulse to the motoneurone from the spindle. On the other hand, augmentation of the H reflex response during voluntary contraction is due to increased motoneurone excitability where descending impulse to the motonerone from upper motor neurone compensate the loss of afferent impulse from the spindle. 2. Effect of gamma blocking upon veluntary contraction. There was never observed the démblée type of discharge at the onset of contraction and could not do a quick contraction of the muscle. There was seen prolonged reaction time on the E. M. G. although no decrease of motor power detected after gamma bloking. This may indicate again that there is decrease of motoneurone excitability after gamma blocking and it takes a little time to recover this decreased excitability by impulse from upper motor neurone at the onset of voluntary contraction
    corecore