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Abstract 25 

Background: Most colorectal cancers (CRC) arise sporadically from precursor lesions: 26 

colonic polyps. Polyp resection prevents progression to CRC. Risk of future polyps is 27 

proportional to the number and size of polyps detected at screening, allowing identification of 28 

high-risk individuals who may benefit from effective chemoprophylaxis. We aimed to 29 

investigate the potential of 5-aminosalicylic acid (5-ASA), a medication used in the treatment 30 

of ulcerative colitis, as a possible preventative agent for sporadic colorectal cancer. 31 

Methods: Human colorectal adenoma (PC/AA/C1, S/AN/C1 and S/RG/C2), transformed-32 

adenoma PC/AA/C1/SB10 and carcinoma cell lines (LS174T and SW620) were treated with 33 

5-ASA. The effect on growth in 2- and 3-dimensional (2D, 3D) culture, β-catenin 34 

transcriptional activity and on cancer stemness properties of the cells were investigated. 35 

Results: 5-ASA was shown, in vitro, to inhibit growth of adenoma cells and suppress β-36 

catenin transcriptional activity. Downregulation of β-catenin was found to repress expression 37 

of stem cell marker LGR5 and functionally suppress stemness in human adenoma and 38 

carcinoma cells using 3D models of tumorigenesis.  39 

Conclusions: 5-ASA can suppress the cancer stem phenotype in adenoma-derived cells. 40 

Affordable and well-tolerated, 5-ASA is an outstanding candidate as a chemoprophylactic 41 

medication to reduce the risk of colorectal polyps and CRC in those at high risk.  42 

Words 200 (max 200) 43 
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Introduction 46 

Colorectal cancer (CRC) is one of the most common malignancies worldwide and, despite 47 

advances in treatment, is the second-most common cause for cancer-related mortality1. Of 48 

concern, the incidence of CRC appears to be rising in adults under the age of 502,3. CRC 49 

derives from pre-neoplastic precursor lesions – polyps – which can be resected before 50 

malignant transformation. Accordingly, many countries have employed national screening 51 

programmes which allow identification of polyps and cancers at early stages when they are 52 

more amenable to curative treatment. These screening programmes also allow identification 53 

of individuals at high risk of CRC: in the recent joint British Society of 54 

Gastroenterology/Association of Coloproctology of Great Britain and Ireland/Public Health 55 

England guidelines, individuals with high-risk findings are offered further surveillance 56 

colonoscopy (high risk findings are defined by the presence of either (a) two or more polyps 57 

(excluding diminutive hyperplastic rectal polyps 1 – 5mm) of which one polyp is ≥ 10mm or 58 

(b) ≥5 polyps of any size)4. Despite this, there is currently no chemoprophylaxis that is 59 

offered to reduce the risk of further polyps or CRC for these individuals. 60 

Aspirin has demonstrated promise as a chemoprophylactic drug in this context; several 61 

clinical trials have reported a reduction in adenoma number with regular aspirin use5,6. Most 62 

recently, the seAFOod (Systematic Evaluation of Aspirin and Fish Oil) polyp prevention 63 

trial recruited patients with high-risk endoscopic findings from the English Bowel Cancer 64 

Screening Programme and reported reduced number of polyps in the aspirin treated group 65 

at follow-up colonoscopy (although the adenoma detection rate was not significantly 66 

reduced)7. Further, clinical trials have demonstrated reduced colorectal polyp burden in 67 

patients with the hereditary cancer syndrome Familial Adenomatous Polyposis and halved 68 

the incidence of CRC in patients with Lynch syndrome following aspirin use8. This has 69 

resulted in the recent recommendation by the National Institute of Clinical Excellence (NICE) 70 

endorsing the prescription of prophylactic aspirin for Lynch syndrome mutation carriers9. 71 

However, aspirin is associated with an increased risk of bleeding, exemplified by the findings 72 
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of two recent, large randomised controlled trials10,11. The ARRIVE (Aspirin to Reduce Risk of 73 

Initial Vascular Events) trial reported that 100mg aspirin daily doubled the risk of 74 

gastrointestinal bleeding (hazard ratio 2.11, 95% confidence interval (CI) 1.36 – 3.28)10, 75 

similar to that reported in the ASPREE trial (HR 1.87, 95% CI 1.32 – 2.66)11. The ASPREE 76 

(Aspirin in Reducing Events in the Elderly) trial also reported that the risk of intracranial 77 

bleeding was increased by 50% in healthy adults over 70 years old (HR 1.5, 95% CI 1.11 – 78 

2.02)11. Consequently, aspirin may not be a suitable chemoprophylactic drug in all patients 79 

and certainly the benefit and harm needs to be carefully assessed before use12.  80 

5-aminosalicylic acid (5-ASA) is a non-steroidal anti-inflammatory drug structurally similar to 81 

aspirin which is commonly prescribed to induce and maintain remission in chronic idiopathic 82 

inflammatory bowel disease (IBD). Conventional subclassification of inflammatory bowel 83 

disease distinguishes two phenotypically categorized conditions: Ulcerative Colitis (UC) and 84 

Crohn’s Disease (CD). UC and CD are both associated with an increased risk of CRC: so-85 

called colitis associated cancer (CAC)13,14.  86 

Although a complete understanding of the anti-inflammatory mechanisms of 5-ASA is 87 

lacking, existing data implies that 5-ASA has efficacy in suppressing multiple pro-88 

inflammatory pathways: 5-ASA has been demonstrated to antagonise several pro-89 

inflammatory mediators including interferon-gamma (IFNγ)15, tumour necrosis factor α 90 

(TNFα)15,16 and nuclear factor kappa B (NFκB)16,17, which may be, at least in part, due to 91 

agonism of peroxisome proliferator-activated receptor gamma (PPARγ)18. Information from 92 

epidemiology studies is limited, but early observational data indicated that 5-ASA reduced 93 

the risk of CAC19 although a 2012 meta-analysis reported a protective effect in clinic-based 94 

studies with no effect in population-based studies20. However, the two most-recent meta-95 

analyses by Qiu et al21 and Bonovas et al22 reported dose-dependent protective effects of 96 

oral mesalazine across a range of study designs, including pooled analysed of population-97 

based studies, in ulcerative colitis. Accordingly, the European Crohn’s and Colitis 98 

Organisation have recommended lifelong oral 5-ASA as chemoprophylaxis against CAC23. 99 
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Importantly, 5-ASA is well-tolerated, is not associated with increased risk of bleeding, and is 100 

affordable for health providers. However, it remains unknown whether 5-ASA confers a 101 

reduced risk of developing sporadic CRC. 102 

The mechanisms underpinning the apparent antineoplastic activity of 5-ASA in CAC have 103 

not been fully elucidated but existing data from models of CRC have suggested that 5-ASA 104 

may suppress Wnt/β-catenin through multiple mechanisms including those implicated in its 105 

anti-inflammatory role including induction of PPARγ18,24; suppression of the cyclo-106 

oxygenase-2 (COX-2)/prostaglandin E2 (PGE2) axis25; post-translational modification of the 107 

β-catenin phosphatase protein phosphatase 2A (PP2A)26. 5-ASA may also promote 108 

membranous sequestration of β-catenin through N-glycosylation of and membranous 109 

translocation of E-cadherin27; negative regulation of the serine/threonine protein kinase 110 

PAK128; upregulation of µ-protocadherin29. Importantly, mutations resulting in upregulated 111 

Wnt/β-catenin signalling are among the first observed in colorectal adenomas and have 112 

been demonstrated as being sufficient for early adenoma formation30. Evidence that 5-ASA 113 

inhibits the β-catenin signalling in adenomas comes from immunohistochemical analysis as 114 

part of the German 5-ASA Polyp Prevention Trial: Munding and colleagues reported reduced 115 

expression of β-catenin in adenomas from patients taking 1g 5-ASA/day31. However, to date, 116 

these results have not been validated either in vitro or in vivo in human adenoma, and the 117 

effect of 5-ASA on adenoma growth is unknown. Further, given that Wnt/β-catenin signalling 118 

is important for the maintenance of the colonic stem compartment32, we hypothesised that 119 

suppression of dysregulated Wnt/β-catenin may suppress the stem phenotype which, 120 

crucially, may prevent adenoma formation and progression in sporadic disease.  121 

Whilst the effect of 5-ASA on the growth of carcinoma-derived cells in vitro has been 122 

described33-38, no such data exists for cells derived from colonic adenomas. In this study we 123 

aimed to establish the effect of 5-ASA on Wnt/β-catenin and stem cell phenotype in human 124 

adenoma using adenoma-derived cells in 2D and 3D models of tumorigenesis in order to 125 
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understand whether 5-ASA may be an effective chemoprophylactic drug for individuals at 126 

high risk of sporadic CRC.  127 

  128 
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Methods 129 

Cell lines & culture: The colorectal adenoma-derived cell lines PC/AA/C1, S/AN/C1, 130 

S/RG/C2 and the transformed adenoma derived cell line PC/AA/C1/SB10 used in these 131 

experiments were established in this laboratory, their derivation and characterisation have 132 

been  previously described39-41.  Growth medium was Dulbecco’s Modified Eagle Medium 133 

(DMEM) (Gibco; Thermo Fisher Scientific, MA, USA) supplemented with 20% foetal bovine 134 

serum (FBS), 1µg/ml hydrocortisone sodium succinate (Sigma-Aldrich; Merck, MO, USA), 135 

0.2 units/ml insulin (Sigma-Aldrich; Merck, MO, USA), 2 mM glutamine (Gibco; Thermo 136 

Fisher Scientific, MA, USA), 100 units/mL penicillin and 100 μg/mL streptomycin (Gibco; 137 

Thermo Fisher Scientific, MA, USA). The CRC-derived cell lines LS174T and SW620 were 138 

obtained from American Type Culture Collection (ATCC; Rockville, MD, USA) were cultured 139 

in DMEM supplemented with 10% FBS, 2mM glutamine, 100units/mL penicillin and 100 140 

units/mL streptomycin.  All cell lines were routinely assessed for microbial contamination 141 

(including mycoplasma) and characterised using an inhouse panel of cellular and molecular 142 

markers to check that cell lines have not been cross contaminated (every 3-6 months; data 143 

not shown). Stocks were securely catalogued and stored, and passage numbers strictly 144 

adhered to prevent phenotypic drift. 145 

Treatments: 5-aminosalicylic acid (Sigma-Aldrich; Merck, MO, USA), was dissolved in 146 

culture media, pH-balanced to 7.35 – 7.45, sterile-filtered and supplemented with HEPES 147 

buffer solution 1M (Sigma-Aldrich; Merck, MO, USA)(20µL per 1mL 5-ASA solution). 148 

All cell lines were seeded into 25cm2 tissue culture flasks (T25; Corning, NY, USA): all 149 

adenoma-derived cell lines were seeded at 2 x 106 cells/flask (except PC/AA/C1, seeded at 150 

4 x 106 cells/flask), transformed adenoma and CRC-derived cell lines at 1 x 106 cells/flask. 151 

Seeding densities were calculated so that all cell lines were 70% confluent when treated with 152 

5-ASA. After 72 hours the culture media was replaced by 20-40mM 5-ASA/culture media 153 

solution. At 24, 48 and 72 hours after addition of 5-ASA, attached cells were trypsinised and 154 

counted in triplicate for each condition. 155 
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Immunoblotting: Whole cell lysates were prepared in situ, on ice and analysed by western 156 

blotting as previously described42 using antibodies to the following: AXIN-2 (2151, Cell 157 

Signaling, MA, USA, 1:1000), β-catenin (9587, Cell Signaling, MA, USA, 1:5000), active-β-158 

catenin (05-665, Millipore, Sigma, MA, USA, 1:1000), c-MYC (SC-40, Santa Cruz 159 

Biotechnology, CA, USA, 1:200), LEF-1 (2230, Cell Signaling, MA, USA, 1:1000) & LGR5 160 

(Ab75850, Abcam, Cambridge, UK, 1:1000). Equal loading was confirm using β-actin 161 

(A5316, Sigma-Aldrich, Merck, MO, USA. 1:1000) or α-tubulin (T9026, Sigma-Aldrich, 162 

Merck, MO, USA. 1:10000). 163 

TOPflash reporter assay: Cells were treated with 5-ASA 24 hours after transfection with 164 

TOPflash/FOPflash and SV40-Renilla plasmids as previously described43 using the Promega 165 

Dual Luciferase Reporter Assay System (Promega, WI, USA) according to the 166 

manufacturer’s instructions. FOPflash reporter with mutated TCF consensus sites was used 167 

to control for non-specific output. Luminescence was measured at 560nm using a Modulus 168 

luminometer (Turner Biosciences, CA, USA).  169 

RNA interference: Cells were transfected using Lipofectamine RNAiMAX (Invitrogen, 170 

Thermo Fisher Scientific, MA, USA), according to the manufacturer's protocol, with small 171 

interfering RNAs (siRNAs, final concentration 50 nM; Dharmacon, Horizon Discovery, 172 

Cambridge, UK) targeting LEF-1, or a negative control, for which four different siRNA 173 

sequences were pooled44. Cells were incubated overnight at 37˚C before medium changing. 174 

Samples were prepared 72 hours after transfection. 175 

Spheroid formation assay: Spheroids formed from adenoma and carcinoma-derived cells 176 

were grown using an adapted protocol from the original Sato paper45
. Cells were 177 

resuspended in Matrigel (Corning, NY, USA) as a single-cell suspension and seeded into 24-178 

well plates (Corning, NY, USA) as described previously46. The Matrigel hemispheres were 179 

allowed to polymerise before being submerged in advanced DMEM:F12 (Gibco, Thermo 180 

Fisher Scientific, MA, USA) supplemented with 0.1% bovine serum albumin (Sigma-Aldrich, 181 

Merck, MO, USA), 2mM glutamine (Gibco, Thermo Fisher Scientific, MA, USA), 10mM 182 
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HEPES (Sigma-Aldrich, Merck, MO, USA), 100units/mL penicillin and 100units/mL 183 

streptomycin (Gibco; Thermo Fisher Scientific, MA, USA), 1% N2 (Thermo-Fisher Scientific, 184 

MA, USA), 2% B27 (Thermo-Fisher Scientific, MA, USA) and 0.2% N-acetylcysteine (Sigma-185 

Aldrich, Merck, MO, USA). For spheroid culture of PC/AA/C1 adenoma-derived cells, 186 

spheroid medium was further supplemented with hEGF (Peprotech, London, UK), 50ng/mL. 187 

The culture media was refreshed twice weekly over the course of 21 days in culture. Wells 188 

were imaged as Z-stacks using a Leica DM16000 widefield microscope and LAS-X software 189 

(both Leica Microsystems, Wetzlar, Germany) on days 7, 11, 14, 18 and 21. Images 190 

acquired were analysed using MATLAB R2015a software (MathWorks, MA, USA). 191 

Quantitative‑PCR (qPCR): Total RNA was extracted from spheroids using TRI-reagent 192 

(Sigma-Aldrich, Merck, MO, USA), a RNeasy mini kit (Qiagen, Hilden, Germany) was utilised 193 

according to the manufacturer's protocol with an additional on-column DNase digestion step 194 

(RNase-Free DNase Set; Qiagen, Hilden, Germany). Complementary (c) DNA synthesis was 195 

synthesised from 2 µg RNA, using the RNA-dependent DNA polymerase, Moloney murine 196 

leukaemia virus reverse transcriptase, (Promega WI, USA). The samples were diluted to a 197 

final concentration of 10 ng/µl. Following optimisation of primers and ensuring the annealing 198 

temperature provided ~100% amplification efficiency per cycle (data not shown), qPCR was 199 

performed, as previously described47, using SYBR Green PCR mix (Qiagen, Hilden, 200 

Germany) and the following Qiagen QuantiTect primers, LGR5 (cat. no. QT00027720) and 201 

CD133 (cat. no. QT00075586), with gene expression normalised interchangeably with both 202 

housekeeping genes TATA-binding protein (TBP; cat. no. QT00000721) or Hypoxanthine 203 

Phosphoribosyl Transferase (HPRT; cat. no. QT00059066). Amplification data was analysed 204 

using MxPro software version 4.10 (Agilent Technologies, CA, USA). 205 

Statistical analysis: All statistical analysis was performed using GraphPad Prism software, 206 

student edition (GraphPad Software, California, USA). P values were determined using 207 

either one sample t-test or one-way ANOVA testing with Bonferroni post-test. Results are 208 

expressed as mean values ± S.E.M. or ± S.D. where specified. 209 
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Results 210 

5-ASA suppresses the growth of adenoma- and CRC-derived cells in vitro 211 

Three adenoma-derived cell lines (PC/AA/C1, S/AN/C1 and S/RG/C2) were seeded in T25 212 

flasks for 72 hours before treatment with 20mM or 40mM 5-ASA (consistent with 213 

concentrations used previously33-38) and the attached cell yield and floating cells counted 214 

after 24, 48 and 72 hours (Figure 1A). This experiment was also carried out in the 215 

transformed adenoma cell line PC/AA/C1/SB10 and two CRC cell lines (LS174T and 216 

SW620, Figure 1A). 5-ASA inhibited the number of attached cells in all adenoma derived cell 217 

lines treated with either 20mM or 40mM 5-ASA. Of interest, the adenoma-derived cell lines 218 

were as sensitive to 5-ASA treatment as the tumorigenic cell lines (Figure 1A).  219 

In 2 of the 3 adenoma derived cell lines, there was a significant induction of floating cells 72 220 

hours after 40mM 5-ASA treatment, indicative of cell death. However, the reduction in cell 221 

yield on treatment with 5-ASA could not be explained by induction of cell death alone; in 222 

support of this, blocking apoptosis with the pan caspase inhibitor (Q-VD-OPh) did not rescue 223 

the reduction in cell yield on 40mM 5-ASA treatment (Figure 1B). Furthermore, although 5-224 

ASA induced apoptosis in cancer derived cells LS174T, blocking it also had no effect the 225 

inhibition of cell yield when treated with 40mM 5-ASA (Supplementary Figure 1A); this is 226 

consistent with 5-ASA inducing growth inhibition in the cancer cells as previously reported33-227 

38.  Taken together, these results show that 5-ASA causes growth inhibition in both the 228 

colorectal adenoma and carcinoma derived cells. 229 

 230 

5-ASA downregulates Wnt/β-catenin signalling in human adenoma and carcinoma 231 

cells 232 

To measure the effect of 5-ASA on β-catenin/TCF-mediated transcription activity in 233 

adenoma derived cells, we treated PC/AA/C1 (APC mutant) adenoma-derived cells with 5-234 

ASA after transfection with TOPflash and FOPflash reporter plasmids and compared it to 235 
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LS174T (β-catenin mutant) carcinoma-derived cells. These cell lines were chosen as 236 

representative of tumours with disrupted β-catenin signalling, important for the initiation of 237 

colorectal carcinogenesis. At 24 hours treatment 40mM 5-ASA TOPflash activity was 238 

significantly suppressed (Figure 2A and B, results for the transformed adenoma derived cells 239 

are shown in supplementary Figure 1B). A similar, but not statistically significant trend was 240 

observed for cells treated with 20mM 5-ASA. Interestingly, total cellular β-catenin levels and 241 

active dephosphorylated β-catenin were unchanged on western blots after 5-ASA treatment 242 

in all cell lines (Figure 2C and supplementary figures 2A and C). Next, we investigated β-243 

catenin target expression after treatment with 5-ASA (Figure 2E and Supplementary Figure 244 

2B and D). Accordingly, known β-catenin-regulated proteins AXIN-2, c-MYC and LEF-1 were 245 

downregulated by 20mM and 40mM 5-ASA in both a dose- and time-dependent manner with 246 

the most marked effects observed at the higher dose at the 72 hour time point (Figure 2E 247 

and Supplementary Figure 2B and D).  248 

 249 

5-ASA reversibly suppresses expression of the stem-marker LGR5 in colorectal 250 

adenoma and carcinoma cells  251 

Leucine rich G-protein coupled receptor-5 (LGR5) is an established marker of crypt-base 252 

stem cells48. LGR5 expression is frequently expressed in adenoma and tumour metastases 253 

but expression in primary CRC is variable49 (Figure 3A). Western blots show that 5-ASA 254 

suppresses expression of LGR5 in 2/3 adenomas, the transformed adenoma and both CRC-255 

derived cells, over a 72 hour period (Figure 3B). Because LGR5 is a β-catenin-regulated 256 

gene, we hypothesised that the effect of 5-ASA would be reversible, important for 257 

maintenance of tissue homeostasis in the surrounding colonic epithelium. To determine 258 

whether expression of LGR5 recovered on removal of 5-ASA, PC/AA/C1 adenoma cells 259 

were treated with 5-ASA for 72 hours before washing the cells and culturing for a further 3 260 

days without 5-ASA. Western blots demonstrated that re-expression of LGR5 was noted 261 
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within 12 hours of stopping 5-ASA treatment in PC/AA/C1 cells (Figure 3C) with expression 262 

returning to baseline 48 hours after stopping treatment.    263 

 264 

Low-dose 5-ASA reduces the ability of PC/AA/C1 cells to form spheroids 265 

LGR5+ stem cells form spheroid structures when grown in extra-cellular matrix gels such as 266 

Matrigel, complete with differentiated colonic cells and hierarchical organisation as seen in 267 

the gastrointestinal tract in vivo45. As such, the ability of cells to form spheroids from single 268 

cell suspensions is considered an assay of stemness50.  269 

 270 

To establish whether 5-ASA could inhibit stem cell function, PC/AA/C1 cells were seeded as 271 

a single cell suspension into Matrigel.  As PC/AA/C1 cells were more sensitive to 5-ASA in 272 

3D culture than 2D culture, they were treated with 1-5mM 5-ASA at the time of seeding. 273 

5mM 5-ASA treatment was sufficient to significantly block spheroid formation as well as 274 

growth of the adenoma derived cells (Figure 4); there were significantly fewer spheroids after 275 

7 days in 3D culture (Figure 4A). Additionally, spheroid size analysis showed 5-ASA 276 

treatment resulted in significantly smaller spheroids after 21 days in culture (Figure 4B-E). 277 

Similar findings were noted for LS174T-derived CRC spheroids (Figure 4F-I). Furthermore, 278 

the mRNA expression of stem cell associated proteins LGR5 and CD133 was significantly 279 

decreased in the 2mM and 5mM treated PC/AA/C1 and LS174T cells (Figure 4J-K).  280 

 281 

Importantly, when these experiments were repeated with 5-ASA removed from the culture 282 

media at day 7, the growth inhibitory effect on the PC/AA/C1 spheroids was sustained for a 283 

further 14 days in culture (Figure 5A-D). Similar results were obtained for LS174T CRC-284 

derived spheroids (Figure 5E-H). This finding further suggests that 5-ASA suppresses the 285 
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stem cell potential of the cells, as both the number and the growth of the spheroids was 286 

unable to fully recover to that of the untreated spheroids once the 5-ASA is removed.  287 

 288 

Discussion 289 

The results presented here provide new insights into the effect of 5-ASA, an affordable and 290 

well-tolerated drug, on the growth and stemness-potential of adenoma-derived cells in vitro. 291 

Important for use in a cancer prevention setting, this is the first report to document the effect 292 

of 5-ASA on adenoma-derived spheroids in 3D culture. 3D cell culture using spheroids is a 293 

useful model for studying stem function; this is exemplified by elegant work from the Sato 294 

group who generated a ‘library’ of spheroids derived from colorectal adenoma and 295 

carcinomas and demonstrated that not only did niche-dependency decrease along the 296 

adenoma-carcinoma sequence, but that spheroids reproduced the histopathological grade 297 

and differentiation capacity of their parental tumours both in vitro and as xenografts51. Our 298 

data demonstrated that 5-ASA consistently negatively regulated Wnt/β-catenin activity and 299 

target gene expression, directly antagonising a key signalling pathway of the colonic stem 300 

compartment. Further, for the first time 5-ASA was demonstrated to negatively regulate 301 

expression of the stem cell marker LGR5 (and stem associated protein CD133). In addition, 302 

by blocking the formation of adenoma-derived spheroids, 5-ASA was shown to functionally 303 

suppress stemness.  304 

 305 

Targeting adenoma cells with stem-cell properties is important because colorectal 306 

tumorigenesis is believed to be initiated and driven by a subpopulation of cells with 307 

properties of stemness – cancer stem cells – typified by asymmetric cell division and slow 308 

cell turnover making them resistant to traditional chemotherapeutics52. Lineage-tracing 309 

experiments have demonstrated that LGR5+ cells act as stem cells in mouse adenoma and 310 

genetic tracing of LGR5+ clones in tumour xenografts derived from human CRC organoids 311 
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have demonstrated that these cells have the ability to generate both differentiated cells and 312 

self-renew53. Further, LGR5+ cells drive adenoma growth in mouse models54 and promote 313 

adenoma cell survival in human adenoma49. Baker and colleagues48 demonstrated using in-314 

situ hybridization that LGR5 expression is increased in adenomas with expression 315 

throughout the adenomatous gland, with a heterogenous distribution and loss of stem 316 

hierarchy observed in normal mucosa. Because LGR5 is a ‘Wnt amplifier’55,56 expansion of 317 

LGR5+ cells may be a key step in allowing cells without permissive mutations in other pro-318 

oncogenic signalling pathways to expand, driving formation of adenomas. Thus, it is possible 319 

that suppression of LGR5 may suppress the stem potential of adenoma cells and may 320 

prevent adenoma formation. Importantly, suppression of β-catenin transcriptional activity and 321 

spheroid formation was demonstrated at 5-ASA concentrations that are achievable with 322 

available 5-ASA preparations: oral 5-ASA preparations equivalent to 2g/day achieve luminal 323 

concentrations of 12 – 22.7mM57. This corresponds with observational epidemiological data 324 

suggesting that 5-ASA >1.2g/day is protective against colitis-associated cancer21. 325 

 326 

How relevant 5-ASA-mediated negative regulation of LGR5 is for established CRC remains 327 

less clear. Whilst LGR5 is commonly expressed/over-expressed in adenomas48, expression 328 

is frequently low/absent in colorectal cancers before re-expression in metastatic deposits49; 329 

indeed, LGR5+ cells appear to be important in metastatic progression58. As summarised by 330 

Morgan and colleagues59, there is abundant contradictory data on the role of LGR5 in CRC. 331 

This may be explained, at least in part, by plasticity exhibited by CSCs. Shimokawa and 332 

colleagues recently demonstrated that LGR5+ carcinoma cells differentiated into both 333 

LGR5+KRT20- and LGR5-KRT20+ daughters, and that selective ablation of LGR5 (using a 334 

CRISPR-Cas9 system) resulted initially in tumour regression followed by re-expression of 335 

LGR5 and recovery of tumour growth53. In this context, using 5-ASA to prevent the re-336 

expression of LGR5 may not only prevent tumour formation and potentially recurrence after 337 

treatment but may also improve the efficacy of conventional therapies, improving the 338 
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prognosis of patients with CRC. Importantly in the 3D cultures, it was possible to 339 

demonstrate that the growth inhibitory effect of 5-ASA on the PC/AA/C1 spheroids was 340 

sustained for a further 14 days in culture after removal of the drug, suggesting that 341 

continuous administration of 5-ASA may not be necessary for either chemoprophylaxis or 342 

therapy. 343 

 344 

5-ASA is an affordable and well-tolerated drug with decades of clinical experience in the 345 

treatment of ulcerative colitis making it an outstanding candidate as a chemoprophylatic 346 

agent for patients at risk of CRC. Perhaps surprisingly for a drug that has been known for 347 

some time to suppress β-catenin activity in CRC cells, there have been a lack of clinical 348 

trials to assess the efficacy of 5-ASA in the prevention of sporadic CRC. In targeting the 349 

stemness potential of adenoma derived cells, results from this study provide new evidence 350 

to support the use of 5-ASA for the prevention of colorectal carcinogenesis. Taken together 351 

with evidence from other studies, including analysis of the effect of 5-ASA in patient 352 

samples31, we believe that robust clinical trials are now required to understand whether 353 

these findings translate into a reduction in adenoma burden in at-risk individuals. 354 

 355 
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Figure Legends 525 

Figure 1: 5-aminosalicylic acid inhibits the growth of human colonic adenoma cells as 526 

well as carcinoma cell lines in 2-dimensional culture. (A) Graphs show attached cell 527 

yield and the number of floating cells as a proportion of total cell yield of three adenoma-528 

derived cell lines (PC/AA/C1, S/AN/C1 and S/RG/C2), left, transformed adenocarcinoma 529 

cells (PC/AA/C1/SB10) and two CRC-derived cell lines (LS174T & SW620), right, 24, 48 and 530 

72 hours after treatment with 20mM and 40mM 5-ASA. Mean ± S.E.M. N=3. One-way 531 

ANOVA with Bonferroni post-test, * = p < 0.05, ** = p < 0.01, *** = p < 0.001. (B) Graphs 532 

shows attached cell yield and percentage of floating cells of (i) PC/AA/C1 and (ii) S/RG/C2, 533 

after treatment with 40mM 5-ASA and 10µM Q-VD-Oph or DMSO, cells were harvested and 534 

counted at 72 hours. Mean ± S.E.M. N=3. One-way ANOVA with Bonferroni post-test, ** = p 535 

< 0.01, *** = p < 0.001.  536 

Figure 2. 5-ASA suppresses β-catenin/TCF transcriptional activity. (A-B) TOPflash 537 

reporter assay at 24 hours after 20mM and 40mM 5-ASA (A) PC/AA/C1 adenoma and (B) 538 

LS174T CRC-derived cells. Mean ± S.E.M. N=3. * = p < 0.05, ** = p < 0.01 (C) (i) Western 539 

blots of PC/AA/C1 and LS174T at 24, 48 and 72 hours after treatment with 20mM and 40mM 540 

5-ASA showing expression of active dephosphorylated and total β-catenin protein, α-tubulin 541 

used as the loading control. (ii) Densitometry graphs show the fold change of active 542 

dephosphorylated β-catenin protein as a ratio of total β-catenin expression over the 72 hour 543 

period. Expression is normalised to the respective control. Data are presented as the mean 544 

± S.E.M. of three independent experiments. N=3. One sample t-test was used to determine 545 

statistical significance. (D) Western blot of LEF-1 expression in PC/AA/C1 and LS174T cells 546 

to determine the specificity of the LEF-1 antibody. The expression level of LEF-1 was 547 

measured by western blotting 72 hour after transfection with a LEF-1 Smartpool siRNA or 548 

negative control. The results are representative of three independent experiments. Β-actin 549 

used as the loading control. (E) (i) Western blot showing PC/AA/C1 and LS174T cells after 550 

24, 48 and 72 hours after treatment with 20mM and 40mM 5-ASA. Wnt/β-catenin target 551 
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proteins AXIN-2, c-MYC and LEF-1 are all downregulated with 5-ASA with the most marked 552 

phenotype observed at 72 hours. β-actin used as the loading control. (ii) Densitometry 553 

graphs show the expression change of AXIN-2, c-MYC and LEF-1 as a fold of the loading 554 

control at the 72 hour timepoint. Expression is normalised to the respective control. Data 555 

presented as the mean ± S.E.M. of three independent experiments. N=3. One sample t-test 556 

was used to determine statistical significance. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.  557 

 558 

Figure 3. 5-ASA suppresses the expression of the stem marker LGR5. (A) Endogenous 559 

levels of LGR5 expression in a panel of colorectal adenoma and carcinoma derived cell 560 

lines. PC/AA/C1, S/AN/C1, S/RG/C2 colorectal cells, PC/AA/C1/SB10 transformed 561 

adenocarcinoma cells, HT29, HCA7, HCT116, HCT15, SW480, SW620, LOVO, LS174T 562 

colorectal adenocarcinoma cells, and SW837 and SW1463 rectal adenocarcinoma cells 563 

were grown to ~70% confluence before collection of total protein for western blot analysis. -564 

tubulin used as the loading control. (B) Western blot analysis demonstrating downregulation 565 

of LGR5 in three adenomas (PC/AA/C1, S/AN/C1 and S/RG/C2), left, transformed 566 

adenocarcinoma cells (PC/AA/C1/SB10) and two CRC-derived cell lines (LS174T and 567 

SW620), right, 24, 48 and 72 hours after treatment with 20mM and 40mM 5-ASA. β-actin 568 

used as a loading control. LGR5 is multiply glycosylated60, explaining the different banding 569 

pattern seen in the different cells.  (ii) Densitometry graphs show the expression change of 570 

LGR5 as a fold of the loading control at the 72 hour timepoint. Expression is normalised to 571 

the respective control. Data presented as the mean ± S.E.M. of three independent 572 

experiments. N=3. One sample t-test was used to determine statistical significance. * = p < 573 

0.05, ** = p < 0.01. (C) Western blots of LGR5 expression in PC/AA/C1 adenoma cells 574 

demonstrating downregulation of LGR5 after commencing treatment with 20mM and 40mM 575 

5-ASA, but subsequent reversal of this regulation once 5-ASA was withdrawn. β-actin used 576 

as a loading control. (ii) Western blot analysis of LGR5 expression in the 12 hours after 577 

stopping 5-ASA treatment. β-actin used as a loading control. 578 
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 579 

Figure 4. 5-ASA reduces the ability of PC/AA/C1 adenoma and LS174T carcinoma cells 580 

to form spheroids. (A-E) PC/AA/C1 human adenoma derived cells (A) Mean number of 581 

spheroids in each well 7 days after culture. N=3 ± S.E.M. * = p < 0.05. (B) Mean log spheroid 582 

area over 21 days in culture. (C) Log spheroid area of spheroids at day 21, demonstrating 583 

distribution of spheroid size. N=1 ± S.D. representative of N=3. (D) Mean log spheroid area 584 

of spheroids at day 1. N=3 ± S.E.M. * = p < 0.05, ** = p < 0.01. (E) Representative images of 585 

PC/AA/C1-derived spheroids at day 21. Images acquired using Leica DM16000 microscope, 586 

5x lens with Leica LAS-X software. Images were processed using MatLab software. (F-I) 587 

LS174T human carcinoma derived cells (F) Mean number of spheroids in each well 7 days 588 

after culture. N=3 ± S.E.M. *** = p < 0.001 (G) Mean log spheroid area over 21 days in 589 

culture. (H) Log spheroid area of spheroids at day 21, demonstrating distribution of spheroid 590 

size. N=1 ± S.D. representative of N=3. (I) Mean log spheroid area of spheroids at day 21. 591 

N=3 ± S.E.M. ** = p < 0.01, *** = p < 0.001. (J-K) Quantitative PCR (QPCR) mRNA analysis 592 

of LGR5 and CD133 gene expression (J) PC/AA/C1- and (K) LS174T- derived spheroids 593 

after 21 days of treatment with 5-ASA. All mRNA values are normalised to the housekeeping 594 

genes TBP or HPRT. Data shows relative mRNA quantity of LGR5 and CD133 presented as 595 

a fold change of the control, which itself was normalised to one. Data are presented as the 596 

mean of three independent experiments ± S.E.M. N=3. One sample t-test was used to 597 

determine statistical significance, * = p < 0.05, ** = p < 0.01. (dRn, baseline corrected 598 

normalised fluorescence). 599 

 600 

Figure 5. The growth inhibitory effect of 5-ASA on PC/AA/C1 adenoma and LS174T 601 

carcinoma derived spheroids is sustained for 14 days after treatment is stopped. (A-D) 602 

PC/AA/C1 human adenoma derived cells (A) Mean number of spheroids per well after 7 603 

days in culture. N=3 ± S.E.M., * = p < 0.05. (B) Mean log spheroid area over 21 days in 604 

culture. 5-ASA was withdrawn from the culture media on day 7. N=3 ± S.E.M. (C) Log 605 
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spheroid area after 21 days in culture, demonstrating distribution of spheroid size. N=1 ± 606 

S.D. (representative of N=3). (D) Mean log spheroid area of spheroids at day 21. N=3 ± 607 

S.E.M.  ** = p < 0.01 (E-H) LS174T human carcinoma derived cells (E) Mean number of 608 

spheroids per well after 7 days in culture. N=3 ± S.E.M. (F) Mean log spheroid area over 21 609 

days in culture. 5-ASA was withdrawn from the culture media on day 7. N=3 ± S.E.M. (G) 610 

Log spheroid area after 21 days in culture, demonstrating distribution of spheroid size. N=1 ± 611 

S.D. (representative of N=3). (H) Mean log spheroid area of spheroids at day 21. N=3 ± 612 

S.E.M. * = p < 0.05, ** = p < 0.01. 613 

 614 

Supplementary Figure 1 615 

(A) Graphs shows attached cell yield and percentage of floating cells of LS174T, after 616 

treatment with 40mM 5-ASA and 10µM Q-VD-Oph or DMSO, cells were harvested and 617 

counted at 72 hours. Mean ± S.E.M. N=3. One-way ANOVA with Bonferroni post-test, ** = p 618 

< 0.01, *** = p < 0.001. (ii) Western blot of cleaved PARP and cleaved Caspase 3 619 

expression in LS174T, attached and floating cells were collected and total protein was 620 

extracted at 72 hour after treatment with 40mM 5-ASA and 10µM Q-VD-Oph or DMSO, α-621 

tubulin used as the loading control. The results are representative of three independent 622 

experiments. (B) TOPflash reporter assay at 24 hours after 20mM and 40mM 5-ASA in 623 

transformed adenocarcinoma PC/AA/C1/SB10. Mean ± S.E.M. N=3. * = p < 0.05. 624 

Supplementary Figure 2 625 

(A) Western blots of S/AN/C1 and S/RG/C2 at 24, 48 and 72 hours after treatment with 626 

20mM and 40mM 5-ASA showing expression of active dephosphorylated and total β-catenin 627 

protein, α-tubulin used as the loading control. S/RG/C2 expresses a 70kDa mutant β-catenin 628 

protein, not detectable by the dephosphorylated β-catenin antibody (manuscript in 629 

preparation). (ii) Densitometry graphs show the fold change of active dephosphorylated β-630 

catenin protein as a ratio of total β-catenin expression over the 72 hour period. Expression is 631 
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normalised to the respective control. Data are presented as the mean ± S.E.M. of three 632 

independent experiments. N=3. One sample t-test was used to determine statistical 633 

significance. (B) Western blot showing S/AN/C1 and S/RG/C2 cells after 24, 48 and 72 634 

hours after treatment with 20mM and 40mM 5-ASA. Wnt/β-catenin target proteins AXIN-2, c-635 

MYC and LEF-1 are all downregulated with 5-ASA with the most marked phenotype 636 

observed at 72 hours. Β-actin used as the loading control. (ii) Densitometry graphs show the 637 

expression change of AXIN-2, c-MYC and LEF-1 as a fold of the loading control at the 72 638 

hour timepoint. Expression is normalised to the respective control. Data presented as the 639 

mean ± S.E.M. of three independent experiments. N=3. One sample t-test was used to 640 

determine statistical significance. * = p < 0.05, ** = p < 0.01. (C) Western blots of 641 

PC/AA/C1/SB10 and SW620 at 24, 48 and 72 hours after treatment with 20mM and 40mM 642 

5-ASA showing expression of active dephosphorylated and total β-catenin protein, α-tubulin643 

used as the loading control. (ii) Densitometry graphs show the fold change of active 644 

dephosphorylated β-catenin protein as a ratio of total β-catenin expression over the 72 hour 645 

period. Expression is normalised to the respective control. Data are presented as the mean 646 

± S.E.M. of three independent experiments. N=3. One sample t-test was used to determine 647 

statistical significance. (D) Western blot showing PC/AA/C1/SB10 and SW620 cells after 24, 648 

48 and 72 hours after treatment with 20mM and 40mM 5-ASA. Wnt/β-catenin target proteins 649 

AXIN-2, c-MYC and LEF-1 are all downregulated in PC/AA/C1/SB10 with 5-ASA with the 650 

most marked phenotype observed at 72 hours. Levels of LEF-1 are undetectable by western 651 

blotting in SW620 cells. Β-actin used as the loading control. (ii) Densitometry graphs show 652 

the expression change of AXIN-2, c-MYC and LEF-1 as a fold of the loading control at the 72 653 

hour timepoint. Expression is normalised to the respective control. Data presented as the 654 

mean ± S.E.M. of three independent experiments. N=3. One sample t-test was used to 655 

determine statistical significance. * = p < 0.05, ** = p < 0.01 656 

657 
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