23 research outputs found

    ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability.</p> <p>Methods</p> <p>Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications <it>in silico </it>using simulated datasets.</p> <p>Results</p> <p>We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage.</p> <p>Conclusions</p> <p>We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait.</p

    Annual cycle of the legume pod borer Maruca vitrata Fabricius (Lepidoptera: Crambidae) in southwestern Burkina Faso

    Get PDF
    Maruca vitrata is an economically significant insect pest of cowpea in sub-Saharan Africa. Understanding the seasonal population patterns of M. vitrata is essential for the establishment of effective pest management strategies. M. vitrata larval populations on cultivated cowpea and adult flying activities were monitored in addition to scouting for host plants and parasitoids during 2 consecutive years in 2010 and 2011 in southwestern Burkina Faso. Our data suggest that M. vitrata populations overlapped on cultivated cowpea and alternate host plants during the rainy season. During the cowpea off-season, M. vitrata maintained a permanent population on the wild host plants Mucuna poggei and Daniella oliveri. The parasitoid fauna include three species, Phanerotoma leucobasis Kri., Braunsia kriegeri End. and Bracon sp. Implications of these finding for pest management strategies are discussed

    Linkage disequilibrium analysis in the genetically isolated Norfolk Island population

    Get PDF
    Norfolk Island is a human genetic isolate, possessing unique population characteristics that could be utilized for complex disease gene localization. Our intention was to evaluate the extent and strength of linkage disequilibrium (LD) in the Norfolk isolate by investigating markers within Xq13.3 and the NOS2A gene encoding the inducible nitric oxide synthase. A total of six microsatellite markers spanning approximately 11 Mb were assessed on chromosome Xq13.3 in a group of 56 men from Norfolk Island. Additionally, three single nucleotide polymorphisms (SNPs) localizing to the NOS2A gene were analyzed in a subset of the complex Norfolk pedigree. With the exception of two of the marker pairs, one of which is the most distantly spaced marker, all the Xq13.3 marker pairs were found to be in significant LD indicating that LD extends up to 9.5-11.5 Mb in the Norfolk Island population. Also, all SNPs studied showed significant LD in both Norfolk Islanders and Australian Caucasians, with two of the marker pairs in complete LD in the Norfolk population only. The Norfolk Island study population possesses a unique set of characteristics including founder effect, geographical isolation, exhaustive genealogical information and phenotypic data of use to cardiovascular disease risk traits. With LD extending up to 9.5-11 Mb, the Norfolk isolate should be a powerful resource for the localization of complex disease genes
    corecore