28 research outputs found

    Design and synthesis of novel quercetin metal complexes as IL-6 inhibitors for anti-inflammatory effect in SARS-CoV-2

    Get PDF
    One of the most common causes of mortality in COVID-19 patients is cytokine release syndrome (CRS). Though several cytokines are involved in CRS, the role of Interleukin 6 is significant. Considering the importance of IL-6 inhibition and the drawbacks of the existing monoclonal antibodies, the present study develops new flavonoid metal complexes as immune boosters targeting IL-6 for SARS-CoV-2 treatment. To identify the potential flavonoids from 152 secondary plant metabolites, PyRx 0.9 tool has been used. The top scorer quercetin was converted into quercetin-oxime. Seven metal complexes (QM-1 to QM-7) were made from quercetin-oxime by utilizing divalent metals such as zinc, copper, magnesium, cobalt, barium, and cadmium. It was assumed that all compounds were moderately soluble and would not penetrate the BBB through in silico ADME studies. However, the in vitro heamolytic research revealed a modest heamolytic effect in all seven complexes. To know the IL-6 inhibitory potential preliminary level, the complexes were screened for cytotoxicity in cell lines MCF-7 which predominantly expresses the IL-6 level. The cytotoxic effects of all complexes were considerable relative to the marketable Nutridac formulation. The complexes quercetin-Zinc (QM1) and quercetin-Zinc-Ascorbic acid (QM7) showed significant cytotoxicity on MCF-7 compared to Nutridac and no cytotoxic toward the normal cell lines

    Wolbachia-Induced Unidirectional Cytoplasmic Incompatibility and Speciation: Mainland-Island Model

    Get PDF
    Bacteria of the genus Wolbachia are among the most common endosymbionts in the world. In many insect species these bacteria induce a sperm-egg incompatibility between the gametes of infected males and uninfected females, commonly called unidirectional cytoplasmic incompatibility (CI). It is generally believed that unidirectional CI cannot promote speciation in hosts because infection differences between populations will be unstable and subsequent gene flow will eliminate genetic differences between diverging populations. In the present study we investigate this question theoretically in a mainland-island model with migration from mainland to island. Our analysis shows that (a) the infection polymorphism is stable below a critical migration rate, (b) an (initially) uninfected “island” can better maintain divergence at a selected locus (e.g. can adapt locally) in the presence of CI, and (c) unidirectional CI selects for premating isolation in (initially) uninfected island populations if they receive migration from a Wolbachia-infected mainland. Interestingly, premating isolation is most likely to evolve if levels of incompatibility are intermediate and if either the infection causes fecundity reductions or Wolbachia transmission is incomplete. This is because under these circumstances an infection pattern with an infected mainland and a mostly uninfected island can persist in the face of comparably high migration. We present analytical results for all three findings: (a) a lower estimation of the critical migration rate in the presence of local adaptation, (b) an analytical approximation for the gene flow reduction caused by unidirectional CI, and (c) a heuristic formula describing the invasion success of mutants at a mate preference locus. These findings generally suggest that Wolbachia-induced unidirectional CI can be a factor in divergence and speciation of hosts

    Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    Get PDF
    BACKGROUND: The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. METHODOLOGY AND PRINCIPAL FINDINGS: Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. CONCLUSIONS AND SIGNIFICANCE: To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis

    The Native Wolbachia Endosymbionts of Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection

    Get PDF
    The bacterial endosymbiont Wolbachia pipientis has been shown to increase host resistance to viral infection in native Drosophila hosts and in the normally Wolbachia-free heterologous host Aedes aegypti when infected by Wolbachia from Drosophila melanogaster or Aedes albopictus. Wolbachia infection has not yet been demonstrated to increase viral resistance in a native Wolbachia-mosquito host system.In this study, we investigated Wolbachia-induced resistance to West Nile virus (WNV; Flaviviridae) by measuring infection susceptibility in Wolbachia-infected and Wolbachia-free D. melanogaster and Culex quinquefasciatus, a natural mosquito vector of WNV. Wolbachia infection of D. melanogaster induces strong resistance to WNV infection. Wolbachia-infected flies had a 500-fold higher ID50 for WNV and produced 100,000-fold lower virus titers compared to flies lacking Wolbachia. The resistance phenotype was transmitted as a maternal, cytoplasmic factor and was fully reverted in flies cured of Wolbachia. Wolbachia infection had much less effect on the susceptibility of D. melanogaster to Chikungunya (Togaviridae) and La Crosse (Bunyaviridae) viruses. Wolbachia also induces resistance to WNV infection in Cx. quinquefasciatus. While Wolbachia had no effect on the overall rate of peroral infection by WNV, Wolbachia-infected mosquitoes produced lower virus titers and had 2 to 3-fold lower rates of virus transmission compared to mosquitoes lacking Wolbachia.This is the first demonstration that Wolbachia can increase resistance to arbovirus infection resulting in decreased virus transmission in a native Wolbachia-mosquito system. The results suggest that Wolbachia reduces vector competence in Cx. quinquefasciatus, and potentially in other Wolbachia-infected mosquito vectors

    Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies

    Get PDF
    The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health

    Cell division: control of the chromosomal passenger complex in time and space

    Get PDF
    corecore