26 research outputs found

    Preparation of Group I Introns for Biochemical Studies and Crystallization Assays by Native Affinity Purification

    Get PDF
    The study of functional RNAs of various sizes and structures requires efficient methods for their synthesis and purification. Here, 23 group I intron variants ranging in length from 246 to 341 nucleotides—some containing exons—were subjected to a native purification technique previously applied only to shorter RNAs (<160 nucleotides). For the RNAs containing both exons, we adjusted the original purification protocol to allow for purification of radiolabeled molecules. The resulting RNAs were used in folding assays on native gel electrophoresis and in self-splicing assays. The intron-only RNAs were subjected to the regular native purification scheme, assayed for folding and employed in crystallization screens. All RNAs that contained a 3′ overhang of one nucleotide were efficiently cleaved off from the support and were at least 90% pure after the non-denaturing purification. A representative subset of these RNAs was shown to be folded and self-splicing after purification. Additionally, crystals were grown for a 286 nucleotide long variant of the Clostridium botulinum intron. These results demonstrate the suitability of the native affinity purification method for the preparation of group I introns. We hope these findings will stimulate a broader application of this strategy to the preparation of other large RNA molecules

    XAF1 as a modifier of p53 function and cancer susceptibility

    Get PDF
    Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers

    In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit

    Get PDF
    6 páginas, 4 figuras. Supplementary information is available on the Nature Methods website.Systems allowing tightly regulated expression of prokaryotic genes in vivo are important for performing functional studies of bacterial genes in host-pathogen interactions and establishing bacteria-based therapies. We integrated a regulatory control circuit activated by acetyl salicylic acid (ASA) in attenuated Salmonella enterica that carries an expression module with a gene of interest under control of the XylS2-dependent Pm promoter. This resulted in 20-150-fold induction ex vivo. The regulatory circuit was also efficiently induced by ASA when the bacteria resided in eukaryotic cells, both in vitro and in vivo. To validate the circuit, we administered Salmonella spp., carrying an expression module encoding the 5-fluorocytosine-converting enzyme cytosine deaminase in the bacterial chromosome or in a plasmid, to mice with tumors. Induction with ASA before 5-fluorocytosine administration resulted in a significant reduction of tumor growth. These results demonstrate the usefulness of the regulatory control circuit to selectively switch on gene expression during bacterial infection.Peer reviewe
    corecore