15 research outputs found
Differences in nutritional quality of parts of Vitis vinifera berries affect fitness of the European grapevine moth.
7 pagesInternational audienc
Ultra-large-scale syntheses of monodisperse nanocrystals
The development of nanocrystals has been intensively pursued, not only for their fundamental scientific interest, but also for many technological applications1-3. The synthesis of monodisperse nanocrystals (size variation <5%) is ofkey importance, because the properties of these nanocrystals depend strongly on their dimensions. For example, the colour sharpness of semiconductor nanocrystal-based optical devices is strongly dependent on the uniformity of the nanocrystals3-6, and monodisperse magnetic nanocrystals are critical for the next-generation multi-terabit magnetic storage media7-9. For these monodisperse nanocrystals to be used, an economical mass-production method needs to be developed. Unfortunately, however, in most syntheses reported so far, only sub-gram quantities of monodisperse nanocrystals were produced. Uniform-sized nanocrystals of CdSe (refs 10,11) and Au (refs 12,13) have been produced using colloidal chemical synthetic procedures. In addition, monodisperse magnetic nanocrystals such as Fe (refs 14,15), Co (refs 16-18), ??-Fe2O3 (refs 19,20), and Fe3O4 (refs 21,22) have been synthesized by using various synthetic methods. Here, we report on the ultra-large-scale synthesis of monodisperse nanocrystals using inexpensive and non-toxic metal salts as reactants. We were able to synthesize as much as 40 g of monodisperse nanocrystals in a single reaction, without a size-sorting process. Moreover, the particle size could be controlled simply by varying the experimental conditions. The current synthetic procedure is very general and nanocrystals of many transition metal oxides were successfully synthesized using a very similar procedure.close1888188
Is global warming affecting cave temperatures? Experimental and model data from a paradigmatic case study
This research focuses on the mechanisms that transfer the variations in surface atmospheric temperature into caves to evaluate whether they record the warming trend of recent decades. As a study case, we use the data from a hall in Postojna Cave (Slovenia), which was monitored from 2009 to 2013. The low-frequency thermal variability of this cave chamber is dominated by the conduction of heat from the surface through the bedrock. We implemented a thermal conduction model that reproduces low-frequency thermal gradients similar to those measured in the cave. At the 37 m depth of this chamber, the model confirms that the bedrock is already recording the local expression of global warming with a delay of 20â25 years, and predicts a cave warming during the coming decades with a mean rate of 0.015 ± 0.004 C yearâ1. However, because of the transfer of surface atmosphere thermal variability depends on the duration of the oscillations, the thermal anomalies with periods 7â15 years in duration have delay times \u3c10 years at the studied hall. The inter-annual variability of the surface atmospheric temperature is recorded in this cave hall, although due to the different delay and amplitude attenuation that depends on the duration of the anomalies, the cave temperature signal differs significantly from that at the surface. As the depth of the cave is a major factor in thermal conduction, this is a principal control on whether or not a cave has already recorded the onset of global warming