330 research outputs found
Integrin-beta3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force
published_or_final_versio
Enhanced reaction kinetics in biological cells
The cell cytoskeleton is a striking example of "active" medium driven
out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to
have a spectacular impact on the mechanical and rheological properties of the
cellular medium, as well as on its transport properties : a generic tracer
particle freely diffuses as in a standard equilibrium medium, but also
intermittently binds with random interaction times to motor proteins, which
perform active ballistic excursions along cytoskeletal filaments. Here, we
propose for the first time an analytical model of transport limited reactions
in active media, and show quantitatively how active transport can enhance
reactivity for large enough tracers like vesicles. We derive analytically the
average interaction time with motor proteins which optimizes the reaction rate,
and reveal remarkable universal features of the optimal configuration. We
discuss why active transport may be beneficial in various biological examples:
cell cytoskeleton, membranes and lamellipodia, and tubular structures like
axons.Comment: 10 pages, 2 figure
Endoplasmic spreading requires coalescence of vimentin intermediate filaments at force-bearing adhesions
For cells to develop long-range forces and carry materials to the periphery, the microtubule and organelle-rich region at the center of the cell-the endoplasm-needs to extend to near the cell edge. Depletion of the actin cross-linking protein filamin A (FlnA) causes a collapse of the endoplasm into a sphere around the nucleus of fibroblasts and disruption of matrix adhesions, indicating that FlnA is involved in endoplasmic spreading and adhesion growth. Here, we report that treatment with the calpain inhibitor N-[N-(N-acetyl-l-leucyl)-l-leucyl]-l-norleucine (ALLN) restores endoplasmic spreading as well as focal adhesion (FA) growth on fibronectin-coated surfaces in a Fln-depleted background. Addback of calpain-uncleavable talin, not full-length talin, achieves a similar effect in Fln-depleted cells and indicates a crucial role for talin in endoplasmic spreading. Because FA maturation involves the vimentin intermediate filament (vIF) network, we also examined the role of vIFs in endoplasmic spreading. Wild-type cells expressing a vimentin variant incapable of polymerization exhibit deficient endoplasmic spreading as well as defects in FA growth. ALLN treatment restores FA growth despite the lack of vIFs but does not restore endoplasmic spreading, implying that vIFs are essential for endoplasm spreading. Consistent with that hypothesis, vIFs are always displaced from adhesions when the endoplasm does not spread. In Fln-depleted cells, vIFs extend beyond adhesions, nearly to the cell edge. Finally, inhibiting myosin II-mediated contraction blocks endoplasmic spreading and adhesion growth. Thus we propose a model in which myosin II-mediated forces and coalescence of vIFs at mature FAs are required for endoplasmic spreading.</p
Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair
Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca2+ activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca2+, AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing
Cell motility: the integrating role of the plasma membrane
The plasma membrane is of central importance in the motility process. It defines the boundary separating the intracellular and extracellular environments, and mediates the interactions between a motile cell and its environment. Furthermore, the membrane serves as a dynamic platform for localization of various components which actively participate in all aspects of the motility process, including force generation, adhesion, signaling, and regulation. Membrane transport between internal membranes and the plasma membrane, and in particular polarized membrane transport, facilitates continuous reorganization of the plasma membrane and is thought to be involved in maintaining polarity and recycling of essential components in some motile cell types. Beyond its biochemical composition, the mechanical characteristics of the plasma membrane and, in particular, membrane tension are of central importance in cell motility; membrane tension affects the rates of all the processes which involve membrane deformation including edge extension, endocytosis, and exocytosis. Most importantly, the mechanical characteristics of the membrane and its biochemical composition are tightly intertwined; membrane tension and local curvature are largely determined by the biochemical composition of the membrane and the biochemical reactions taking place; at the same time, curvature and tension affect the localization of components and reaction rates. This review focuses on this dynamic interplay and the feedbacks between the biochemical and biophysical characteristics of the membrane and their effects on cell movement. New insight on these will be crucial for understanding the motility process
Accumulation of an Antidepressant in Vesiculogenic Membranes of Yeast Cells Triggers Autophagy
Many antidepressants are cationic amphipaths, which spontaneously accumulate in natural or reconstituted membranes in the absence of their specific protein targets. However, the clinical relevance of cellular membrane accumulation by antidepressants in the human brain is unknown and hotly debated. Here we take a novel, evolutionarily informed approach to studying the effects of the selective-serotonin reuptake inhibitor sertraline/Zoloft® on cell physiology in the model eukaryote Saccharomyces cerevisiae (budding yeast), which lacks a serotonin transporter entirely. We biochemically and pharmacologically characterized cellular uptake and subcellular distribution of radiolabeled sertraline, and in parallel performed a quantitative ultrastructural analysis of organellar membrane homeostasis in untreated vs. sertraline-treated cells. These experiments have revealed that sertraline enters yeast cells and then reshapes vesiculogenic membranes by a complex process. Internalization of the neutral species proceeds by simple diffusion, is accelerated by proton motive forces generated by the vacuolar H+-ATPase, but is counteracted by energy-dependent xenobiotic efflux pumps. At equilibrium, a small fraction (10–15%) of reprotonated sertraline is soluble while the bulk (90–85%) partitions into organellar membranes by adsorption to interfacial anionic sites or by intercalation into the hydrophobic phase of the bilayer. Asymmetric accumulation of sertraline in vesiculogenic membranes leads to local membrane curvature stresses that trigger an adaptive autophagic response. In mutants with altered clathrin function, this adaptive response is associated with increased lipid droplet formation. Our data not only support the notion of a serotonin transporter-independent component of antidepressant function, but also enable a conceptual framework for characterizing the physiological states associated with chronic but not acute antidepressant administration in a model eukaryote
The formation of actin waves during regeneration after axonal lesion is enhanced by BDNF
During development, axons of neurons in the mammalian central nervous system lose their ability to regenerate. To study the regeneration process, axons of mouse hippocampal neurons were partially damaged by an UVA laser dissector system. The possibility to deliver very low average power to the sample reduced the collateral thermal damage and allowed studying axonal regeneration of mouse neurons during early days in vitro. Force spectroscopy measurements were performed during and after axon ablation with a bead attached to the axonal membrane and held in an optical trap. With this approach, we quantified the adhesion of the axon to the substrate and the viscoelastic properties of the membrane during regeneration. The reorganization and regeneration of the axon was documented by long-term live imaging. Here we demonstrate that BDNF regulates neuronal adhesion and favors the formation of actin waves during regeneration after axonal lesion
Conjugation to the Cell-Penetrating Peptide TAT Potentiates the Photodynamic Effect of Carboxytetramethylrhodamine
Cell-penetrating peptides (CPPs) can transport macromolecular cargos into live cells. However, the cellular delivery efficiency of these reagents is often suboptimal because CPP-cargo conjugates typically remain trapped inside endosomes. Interestingly, irradiation of fluorescently labeled CPPs with light increases the release of the peptide and its cargos into the cytosol. However, the mechanism of this phenomenon is not clear. Here we investigate the molecular basis of the photo-induced endosomolytic activity of the prototypical CPPs TAT labeled to the fluorophore 5(6)-carboxytetramethylrhodamine (TMR).We report that TMR-TAT acts as a photosensitizer that can destroy membranes. TMR-TAT escapes from endosomes after exposure to moderate light doses. However, this is also accompanied by loss of plasma membrane integrity, membrane blebbing, and cell-death. In addition, the peptide causes the destruction of cells when applied extracellularly and also triggers the photohemolysis of red blood cells. These photolytic and photocytotoxic effects were inhibited by hydrophobic singlet oxygen quenchers but not by hydrophilic quenchers.Together, these results suggest that TAT can convert an innocuous fluorophore such as TMR into a potent photolytic agent. This effect involves the targeting of the fluorophore to cellular membranes and the production of singlet oxygen within the hydrophobic environment of the membranes. Our findings may be relevant for the design of reagents with photo-induced endosomolytic activity. The photocytotoxicity exhibited by TMR-TAT also suggests that CPP-chromophore conjugates could aid the development of novel Photodynamic Therapy agents
Virus Movements on the Plasma Membrane Support Infection and Transmission between Cells
How viruses are transmitted across the mucosal epithelia of the respiratory, digestive, or excretory tracts, and how they spread from cell to cell and cause systemic infections, is incompletely understood. Recent advances from single virus tracking experiments have revealed conserved patterns of virus movements on the plasma membrane, including diffusive motions, drifting motions depending on retrograde flow of actin filaments or actin tail formation by polymerization, and confinement to submicrometer areas. Here, we discuss how viruses take advantage of cellular mechanisms that normally drive the movements of proteins and lipids on the cell surface. A concept emerges where short periods of fast diffusive motions allow viruses to rapidly move over several micrometers. Coupling to actin flow supports directional transport of virus particles during entry and cell-cell transmission, and local confinement coincides with either nonproductive stalling or infectious endocytic uptake. These conserved features of virus–host interactions upstream of infectious entry offer new perspectives for anti-viral interference
Amyloid-b peptide on sialyl-LewisX-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface
Increased deposition of amyloid-b peptide (Ab) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer’s disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized
by sialyl-Lewisx (sLex) were employed to investigate Ab-altered mechanics of membrane tethers formed by bonding
between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Ab to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Ab to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Ab lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Ab and latrunculin A decreased membrane stiffness, suggesting a
lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Ab were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Ab to enhance p-selectin expression at the CEC surface and induce cytoskeleton
reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.This work was supported by Alzheimer Association Grant NIRG-06-24448; NIH Grant 1P01 AG18357, R21NS052385, 5R21AG032579 and in part by
1P01HL095486 and AHA 0835676N; ‘‘Bolashak’’ scholarship and Ministry of Education and Science of the Republic of Kazakhstan 1029/GF2. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …
