57 research outputs found

    Genomic traits of Klebsiella oxytoca DSM 29614, an uncommon metal-nanoparticle producer strain isolated from acid mine drainages

    Get PDF
    Abstract Background: Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)- citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The DSM 29614 strain is multi metal resistant and produces metal nanoparticles that are embedded in its very peculiar capsular exopolysaccharide. These metal nanoparticles were effective as antimicrobial and anticancer compounds, chemical catalysts and nano-fertilizers. Results: The DSM 29614 strain genome was sequenced and analysed by a combination of in silico procedures. Comparative genomics, performed between 85 K. oxytoca representatives and K. oxytoca DSM 29614, revealed that this bacterial group has an open pangenome, characterized by a very small core genome (1009 genes, about 2%), a high fraction of unique (43,808 genes, about 87%) and accessory genes (5559 genes, about 11%). Proteins belonging to COG categories “Carbohydrate transport and metabolism” (G), “Amino acid transport and metabolism” (E), “Coenzyme transport and metabolism” (H), “Inorganic ion transport and metabolism” (P), and “membrane biogenesis-related proteins” (M) are particularly abundant in the predicted proteome of DSM 29614 strain. The results of a protein functional enrichment analysis - based on a previous proteomic analysis – revealed metabolic optimization during Fe(III)- citrate anaerobic utilization. In this growth condition, the observed high levels of Fe(II) may be due to different flavin metal reductases and siderophores as inferred form genome analysis. The presence of genes responsible for the synthesis of exopolysaccharide and for the tolerance to heavy metals was highlighted too. The inferred genomic insights were confirmed by a set of phenotypic tests showing specific metabolic capability in terms of i) Fe2+ and exopolysaccharide production and ii) phosphatase activity involved in precipitation of metal ion-phosphate salts. Conclusion: The K. oxytoca DSM 29614 unique capabilities of using Fe(III)-citrate as sole carbon and energy source in anaerobiosis and tolerating diverse metals coincides with the presence at the genomic level of specific genes that can support i) energy metabolism optimization, ii) cell protection by the biosynthesis of a peculiar exopolysaccharide armour entrapping metal ions and iii) general and metal-specific detoxifying activities by different proteins and metabolites

    Fabrication process optimization of hemp fibre-reinforced polypropylene composites

    No full text
    Natural fibre-reinforced composites have attracted great research and economic interests because of their outstanding 'green' characteristics compared with glass fibre-reinforced composites. It is very important to understand the processing effect on the natural fibre-reinforced composites mechanical properties because of the natural fibre degradation characteristics. Optimizing the fabrication process, especially the compounding process, is effective to achieve the optimal properties of the composites. In this research a natural fibre, noil hemp fibre, was applied to reinforce polypropylene with internal mixing process. The influence of compounding parameters, such as mixing temperature, mixing time and rotor speed, on the mechanical properties (tensile strength, flexural strength and impact strength) of the noil hemp fibre/polypropylene composites was investigated using orthogonal method and the evidence of thermogravimetric analysis test of fibre and the observation of fibre dispersion in resin. The range analysis and variance of analysis demonstrated that the mixing temperature has significant effect on the three mechanical properties, mixing time has minor influence on the tensile and flexural strengths, and rotor speed mainly affects the impact strength. The thermogravimetric analysis test of noil hemp fibre and the fibre dispersion in resin show that a combination of low mixing temperature, short mixing time and high rotor speed of compounding process is helpful to achieve certain fibre dispersion without serious thermal degradation of fibre. Noil hemp fibre/polypropylene composites with the best comprehensive mechanical properties could be obtained at 165 degree C for 12 min with rotor speed 50 r/min

    Parenteral Delivery of HPβCD: Effects on Drug-HSA Binding

    No full text
    It is thought that cyclodextrins, such as 2-hydroxypropyl-β-cyclodextrin (HPβCD), will at high concentration affect pharmacokinetics of drugs through competitive binding with plasma proteins. Albumin is the major component of plasma proteins responsible for plasma protein binding. The purpose of this study was to evaluate in vitro the competitive binding of drugs between human serum albumin (HSA) and HPβCD in isotonic pH 7.4 phosphate buffer saline solution (PBS) at ambient temperature. Eight model drugs were selected based on their physicochemical properties and ability to form complexes with HSA and HPβCD. The drug/HPβCD stability constants (K1:1) were determined by the phase-solubility method and HSA/HPβCD competitive binding determined by an equilibrium dialysis method. Protein binding of drugs that are both strongly protein bound and have high affinity to HPβCD (i.e., have high K1:1 value) is most likely to be affected by parenterally administered HPβCD. However, this in vitro study indicates that even for those drugs single parenteral dose of HPβCD has to be as high as 70 g to have detectable effect on their protein binding. Weakly protein bound drugs and drugs with low affinity towards HPβCD are insensitive to the cyclodextrin presence regardless their lipophilic properties
    corecore