74 research outputs found

    Use of Electroencephalography Brain-Computer Interface Systems as a Rehabilitative Approach for Upper Limb Function After a Stroke: A Systematic Review

    Get PDF
    Background: Brain-computer interface (BCI) systems have been suggested as a promising tool for neurorehabilitation. However, to date, there is a lack of homogeneous findings. Furthermore, no systematic reviews have analyzed the degree of validation of these interventions for upper limb (UL) motor rehabilitation poststroke. Objectives: The study aims were to compile all available studies that assess an UL intervention based on an electroencephalography (EEG) BCI system in stroke; to analyze the methodological quality of the studies retrieved; and to determine the effects of these interventions on the improvement of motor abilities. Type: This was a systematic review. Literature Survey: Searches were conducted in PubMed, PEDro, Embase, Cumulative Index to Nursing and Allied Health, Web of Science, and Cochrane Central Register of Controlled Trial from inception to September 30, 2015. Methodology: This systematic review compiles all available studies that assess UL intervention based on an EEG-BCI system in patients with stroke, analyzing their methodological quality using the Critical Review Form for Quantitative Studies, and determining the grade of recommendation of these interventions for improving motor abilities as established by the Oxford Centre for Evidence-based Medicine. The articles were selected according to the following criteria: studies evaluating an EEG-based BCI intervention; studies including patients with a stroke and hemiplegia, regardless of lesion origin or temporal evolution; interventions using an EEG-based BCI to restore functional abilities of the affected UL, regardless of the interface used or its combination with other therapies; and studies using validated tools to evaluate motor function. Synthesis: After the literature search, 13 articles were included in this review: 4 studies were randomized controlled trials; 1 study was a controlled study; 4 studies were case series studies; and 4 studies were case reports. The methodological quality of the included papers ranged from 6 to 15, and the level of evidence varied from 1b to 5. The articles included in this review involved a total of 141 stroke patients. Conclusions: This systematic review suggests that BCI interventions may be a promising rehabilitation approach in subjects with stroke. Level of Evidence: I

    Comparative study of nonlinear properties of EEG signals of a normal person and an epileptic patient

    Get PDF
    Background: Investigation of the functioning of the brain in living systems has been a major effort amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy has drawn the most attention because this disorder can affect the quality of life of a person. In this paper we have reinvestigated the EEGs for normal and epileptic patients using surrogate analysis, probability distribution function and Hurst exponent. Results: Using random shuffled surrogate analysis, we have obtained some of the nonlinear features that was obtained by Andrzejak \textit{et al.} [Phys Rev E 2001, 64:061907], for the epileptic patients during seizure. Probability distribution function shows that the activity of an epileptic brain is nongaussian in nature. Hurst exponent has been shown to be useful to characterize a normal and an epileptic brain and it shows that the epileptic brain is long term anticorrelated whereas, the normal brain is more or less stochastic. Among all the techniques, used here, Hurst exponent is found very useful for characterization different cases. Conclusions: In this article, differences in characteristics for normal subjects with eyes open and closed, epileptic subjects during seizure and seizure free intervals have been shown mainly using Hurst exponent. The H shows that the brain activity of a normal man is uncorrelated in nature whereas, epileptic brain activity shows long range anticorrelation.Comment: Keywords:EEG, epilepsy, Correlation dimension, Surrogate analysis, Hurst exponent. 9 page

    Future treatment strategies of aggressive pituitary tumors

    Get PDF
    While surgery remains the first-line treatment of most aggressive pituitary adenomas, medical therapy is important as second-line or adjunctive therapy in a large proportion of patients. Dopamine agonists (DAs) are the best treatment for prolactinomas, but when DAs are not tolerated, new somatostatin receptor subtype 5 (SSTR5) inhibitors may offer an alternative in the future. Unfortunately, these are unlikely to be effective in DA-resistant prolactinomas. In acromegaly, the existing somatostatin analogs, octreotide and lanreotide, will remain the medical treatment of choice for the foreseeable future. There is an urgent need for medical therapies in Cushing’s disease, and the SSTR5 analogs could offer an effective treatment in a proportion of patients within the next few years. Finally, the medical management options for non-functioning pituitary adenomas are also very limited, and a new chimeric agent with activity towards dopamine receptors, SSTR5 and SSTR2 may help reduce adenoma recurrence in the future

    Effect of an edible nanomultilayer coating by electrostatic self-assembly on the shelf life of fresh-cut mangoes

    Get PDF
    This work aims at evaluating the effect of an alginate-chitosan nanomultilayer coating, obtained by electrostatic layer-by-layer self-assembling, in the quality and shelf life of fresh-cut mangoes. Coated and uncoated fresh-cut mangoes were stored under refrigeration (8 °C) for 14 days. The changes in mass loss, titratable acidity, pH, ascorbic acid content, total soluble solids, malondialdehyde content, browning rate, and microbial count were evaluated during storage. At the end of the storage period, lower values of mass loss, pH, malondialdehyde content, browning rate, soluble solids, microorganisms proliferation, and higher titratable acidity were observed in the coated mangoes. The nanomultilayer coating did not improve the retention of vitamin C during storage of fresh-cut mangoes. Results suggest that chitosan-alginate nanomultilayer edible coating extends the shelf life of fresh-cut mangoes up to 8 days.Author Marthyna Pessoa de Souza thanks Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/PDEE-Brazil) and Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE, Brazil) for granting her scholarships. The authors thank the Fundacao para a Ciencia e a Tecnologia (FCT) Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes", REF. NORTE-07-0124-FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, and FEDER (Portugal)

    A New Pterosaur (Pterodactyloidea: Azhdarchidae) from the Upper Cretaceous of Morocco

    Get PDF
    The Kem Kem beds in South Eastern Morocco contain a rich early Upper (or possibly late Lower) Cretaceous vertebrate assemblage. Fragmentary remains, predominantly teeth and jaw tips, represent several kinds of pterosaur although only one species, the ornithocheirid Coloborhynchus moroccensis, has been named. Here, we describe a new azhdarchid pterosaur, Alanqa saharica nov. gen. nov. sp., based on an almost complete well preserved mandibular symphysis from Aferdou N'Chaft. We assign additional fragmentary jaw remains, some of which have been tentatively identified as azhdarchid and pteranodontid, to this new taxon which is distinguished from other azhdarchids by a remarkably straight, elongate, lance-shaped mandibular symphysis that bears a pronounced dorsal eminence near the posterior end of its dorsal (occlusal) surface. Most remains, including the holotype, represent individuals of approximately three to four meters in wingspan, but a fragment of a large cervical vertebra, that probably also belongs to A. saharica, suggests that wingspans of six meters were achieved in this species. The Kem Kem beds have yielded the most diverse pterosaur assemblage yet reported from Africa and provide the first clear evidence for the presence of azhdarchids in Gondwana at the start of the Late Cretaceous. This, the relatively large size achieved by Alanqa, and the additional evidence of variable jaw morphology in azhdarchids provided by this taxon, indicates a longer and more complex history for this clade than previously suspected

    Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment

    Get PDF
    High frequency (30–70 Hz) gamma band oscillations in the human electro-encephalogram (EEG) are thought to reflect perceptual and cognitive processes. It is therefore interesting to study these measures in cognitive impairment and dementia. To evaluate gamma band oscillations as a diagnostic biomarker in Alzheimer’s disease (AD) and mild cognitive impairment (MCI), 15 psychoactive drug naïve AD patients, 20 MCI patients and 20 healthy controls participated in this study. Gamma band power (GBP) was measured in four conditions viz. resting state, music listening, story listening and visual stimulation. To evaluate test–retest reliability (TRR), subjects underwent a similar assessment one week after the first. The overall TRR was high. Elevated GBP was observed in AD when compared to MCI and control subjects in all conditions. The results suggest that elevated GBP is a reproducible and sensitive measure for cognitive dysfunction in AD in comparison with MCI and controls

    Role of TNF-α in lung tight junction alteration in mouse model of acute lung inflammation

    Get PDF
    In the present study, we used tumor necrosis factor-R1 knock out mice (TNF-αR1KO) to understand the roles of TNF-α on epithelial function in models of carrageenan-induced acute lung inflammation. In order to elucidate whether the observed anti-inflammatory status is related to the inhibition of TNF-α, we also investigated the effect of etanercept, a TNF-α soluble receptor construct, on lung TJ function. Pharmacological and genetic TNF-α inhibition significantly reduced the degree of (1) TNF-α production in pleural exudates and in the lung tissues, (2) the inflammatory cell infiltration in the pleural cavity as well as in the lung tissues (evaluated by MPO activity), (3) the alteration of ZO-1, Claudin-2, Claudin-4, Claudin-5 and β-catenin (immunohistochemistry) and (4) apoptosis (TUNEL staining, Bax, Bcl-2 expression). Taken together, our results demonstrate that inhibition of TNF-α reduces the tight junction permeability in the lung tissues associated with acute lung inflammation, suggesting a possible role of TNF-α on lung barrier dysfunction

    On the Size and Flight Diversity of Giant Pterosaurs, the Use of Birds as Pterosaur Analogues and Comments on Pterosaur Flightlessness

    Get PDF
    The size and flight mechanics of giant pterosaurs have received considerable research interest for the last century but are confused by conflicting interpretations of pterosaur biology and flight capabilities. Avian biomechanical parameters have often been applied to pterosaurs in such research but, due to considerable differences in avian and pterosaur anatomy, have lead to systematic errors interpreting pterosaur flight mechanics. Such assumptions have lead to assertions that giant pterosaurs were extremely lightweight to facilitate flight or, if more realistic masses are assumed, were flightless. Reappraisal of the proportions, scaling and morphology of giant pterosaur fossils suggests that bird and pterosaur wing structure, gross anatomy and launch kinematics are too different to be considered mechanically interchangeable. Conclusions assuming such interchangeability—including those indicating that giant pterosaurs were flightless—are found to be based on inaccurate and poorly supported assumptions of structural scaling and launch kinematics. Pterosaur bone strength and flap-gliding performance demonstrate that giant pterosaur anatomy was capable of generating sufficient lift and thrust for powered flight as well as resisting flight loading stresses. The retention of flight characteristics across giant pterosaur skeletons and their considerable robustness compared to similarly-massed terrestrial animals suggest that giant pterosaurs were not flightless. Moreover, the term ‘giant pterosaur’ includes at least two radically different forms with very distinct palaeoecological signatures and, accordingly, all but the most basic sweeping conclusions about giant pterosaur flight should be treated with caution. Reappraisal of giant pterosaur material also reveals that the size of the largest pterosaurs, previously suggested to have wingspans up to 13 m and masses up to 544 kg, have been overestimated. Scaling of fragmentary giant pterosaur remains have been misled by distorted fossils or used inappropriate scaling techniques, indicating that 10–11 m wingspans and masses of 200–250 kg are the most reliable upper estimates of known pterosaur size

    Effects of Different Correlation Metrics and Preprocessing Factors on Small-World Brain Functional Networks: A Resting-State Functional MRI Study

    Get PDF
    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the “best” network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies
    corecore