25 research outputs found

    Prediction of disability-free survival in healthy older people

    Get PDF
    Prolonging survival in good health is a fundamental societal goal. However, the leading determinants of disability-free survival in healthy older people have not been well established. Data from ASPREE, a bi-national placebo-controlled trial of aspirin with 4.7 years median follow-up, was analysed. At enrolment, participants were healthy and without prior cardiovascular events, dementia or persistent physical disability. Disability-free survival outcome was defined as absence of dementia, persistent disability or death. Selection of potential predictors from amongst 25 biomedical, psychosocial and lifestyle variables including recognized geriatric risk factors, utilizing a machine-learning approach. Separate models were developed for men and women. The selected predictors were evaluated in a multivariable Cox proportional hazards model and validated internally by bootstrapping. We included 19,114 Australian and US participants aged ≥65 years (median 74 years, IQR 71.6–77.7). Common predictors of a worse prognosis in both sexes included higher age, lower Modified Mini-Mental State Examination score, lower gait speed, lower grip strength and abnormal (low or elevated) body mass index. Additional risk factors for men included current smoking, and abnormal eGFR. In women, diabetes and depression were additional predictors. The biased-corrected areas under the receiver operating characteristic curves for the final prognostic models at 5 years were 0.72 for men and 0.75 for women. Final models showed good calibration between the observed and predicted risks. We developed a prediction model in which age, cognitive function and gait speed were the strongest predictors of disability-free survival in healthy older people. Trial registration Clinicaltrials.gov (NCT01038583

    Isomeric ruthenium terpyridine complexes [Ru(trpy)(L)Cl](n+) containing the unsymmetrically bidentate acceptor L=3-amino-6-(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine. Synthesis, structures, electrochemistry, spectroscopy and DFT calculations

    No full text
    The isomeric title complexes were obtained in almost equimolar ratio from the reaction of Ru(trpy)Cl-3 and L. Crystal structure analyses of the perchlorate hemihydrates, electrochemical and spectroscopic (NMR, UV/VIS, EPR) studies, supported by DFT calculations, reveal distinct differences between the isomeric redox series [1](n+) (tetrazine-N-t trans to Cl) and [2](n+) (pyrazolyl-N-p trans to Cl; n = 0, 1, 2). The latter system with the pi acceptors trpy and tetrazine in the equatorial plane and the pyrazolyl and chloride donors in the axial positions exhibits facilitated oxidation, lower energy MLCT transitions, more balanced chelate coordination, and a higher g anisotropy in the oxidised (Ru-III) state. According to partially resolved EPR spectra of one-electron reduced neutral compounds 1 and 2 they have the unpaired electron predominantly in the tetrazine ring of L

    Cadmium toxicity affects photosynthesis and plant growth at different levels

    No full text
    In this article we discuss and update some of the effects of Cd toxicity on the photosynthetic apparatus in a model crop Lactuca sativa. Seeds of L. sativa were germinated in solutions with 0, 1, 10 and 50 μM of Cd(NO3)2 and then transferred to a hydroponic culture medium. After 28 days, the effects of Cd on the photosynthetic apparatus of lettuce were analysed. Exposure of lettuce to 1 μM Cd(NO3)2 affected already plant growth (dry biomass), but, did not induce serious damages in the photosynthetic apparatus. However, increasing concentrations of this metal to 10 and 50 μM promoted a strong reduction of the maximum photochemical efficiency of PSII and an impairment of net CO2 assimilation rate, putatively due to Rubisco activity decrease. This ultimately results in a strong inhibition of plant growth. Nutrient uptake and carbohydrate assimilation were also severely affected by Cd
    corecore