16 research outputs found

    Isomeric ruthenium terpyridine complexes [Ru(trpy)(L)Cl](n+) containing the unsymmetrically bidentate acceptor L=3-amino-6-(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine. Synthesis, structures, electrochemistry, spectroscopy and DFT calculations

    No full text
    The isomeric title complexes were obtained in almost equimolar ratio from the reaction of Ru(trpy)Cl-3 and L. Crystal structure analyses of the perchlorate hemihydrates, electrochemical and spectroscopic (NMR, UV/VIS, EPR) studies, supported by DFT calculations, reveal distinct differences between the isomeric redox series [1](n+) (tetrazine-N-t trans to Cl) and [2](n+) (pyrazolyl-N-p trans to Cl; n = 0, 1, 2). The latter system with the pi acceptors trpy and tetrazine in the equatorial plane and the pyrazolyl and chloride donors in the axial positions exhibits facilitated oxidation, lower energy MLCT transitions, more balanced chelate coordination, and a higher g anisotropy in the oxidised (Ru-III) state. According to partially resolved EPR spectra of one-electron reduced neutral compounds 1 and 2 they have the unpaired electron predominantly in the tetrazine ring of L

    Cadmium toxicity affects photosynthesis and plant growth at different levels

    No full text
    In this article we discuss and update some of the effects of Cd toxicity on the photosynthetic apparatus in a model crop Lactuca sativa. Seeds of L. sativa were germinated in solutions with 0, 1, 10 and 50 μM of Cd(NO3)2 and then transferred to a hydroponic culture medium. After 28 days, the effects of Cd on the photosynthetic apparatus of lettuce were analysed. Exposure of lettuce to 1 μM Cd(NO3)2 affected already plant growth (dry biomass), but, did not induce serious damages in the photosynthetic apparatus. However, increasing concentrations of this metal to 10 and 50 μM promoted a strong reduction of the maximum photochemical efficiency of PSII and an impairment of net CO2 assimilation rate, putatively due to Rubisco activity decrease. This ultimately results in a strong inhibition of plant growth. Nutrient uptake and carbohydrate assimilation were also severely affected by Cd
    corecore