28 research outputs found

    Genomic-based-breeding tools for tropical maize improvement

    Get PDF
    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail

    Deuterium NMR analysis of the structure and dynamics of membrane components

    No full text
    The characterisation of biological membranes (and model membrane systems) by solid state NMR has been a field of ever growing interest for more than twenty years. In this short review, we illustrate the possibilities of this approach in terms of: fatty acid mobility, phase diagram of lipid mixtures, average orientation of intrinsic constituents (lipid polar head groups, sterols, photoactivatable phospholipid) and extrinsic ones (solvents, peptides, anaesthetics), nature and time constants of internal movements by relaxation experiments, membrane-bound peptide conformations

    Sterols and membrane dynamics

    No full text
    The effect of sterols from mammals, plants, fungi, and bacteria on model and natural membrane dynamics are reviewed, in the frame of ordering–disordering properties of membranes. It is shown that all sterols share a common property: the ability to regulate dynamics in order to maintain membranes in a microfluid state where it can convey important biological processes. Depending on the sterol class, this property is modulated by molecular modifications that have occurred during evolution. The role of sterols in rafts, antibiotic complexes, and in protecting membranes from the destructive action of amphipathic toxins is also discussed

    Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs

    No full text
    Life-history characteristics exert a profound influence upon the population structure of many marine organisms. However, relatively few genetic studies have compared direct with indirect-developing species in the same ecosystem or geographical region, and none to our knowledge within an Antarctic setting. To address this issue, we have collected novel amplified fragment length polymorphism (AFLP) data from the direct-developing top shell Margarella antarctica to form a comparison with previously published data for the broadcast-spawning Antarctic limpet Nacella concinna. We scored 270 loci in 240 M. antarctica individuals sampled from five populations spanning the full length of the Antarctic Peninsula. Profound differences were identified in the strength and pattern of population structure between the two species, consistent with gene flow being highly restricted in M. antarctica relative to N. concinna
    corecore