13 research outputs found

    The problem of thresholding in small-world network analysis

    Get PDF
    Graph theory deterministically models networks as sets of vertices, which are linked by connections. Such mathematical representation of networks, called graphs are increasingly used in neuroscience to model functional brain networks. It was shown that many forms of structural and functional brain networks have small-world characteristics, thus, constitute networks of dense local and highly effective distal information processing. Motivated by a previous small-world connectivity analysis of resting EEG-data we explored implications of a commonly used analysis approach. This common course of analysis is to compare small-world characteristics between two groups using classical inferential statistics. This however, becomes problematic when using measures of inter-subject correlations, as it is the case in commonly used brain imaging methods such as structural and diffusion tensor imaging with the exception of fibre tracking. Since for each voxel, or region there is only one data point, a measure of connectivity can only be computed for a group. To empirically determine an adequate small-world network threshold and to generate the necessary distribution of measures for classical inferential statistics, samples are generated by thresholding the networks on the group level over a range of thresholds. We believe that there are mainly two problems with this approach. First, the number of thresholded networks is arbitrary. Second, the obtained thresholded networks are not independent samples. Both issues become problematic when using commonly applied parametric statistical tests. Here, we demonstrate potential consequences of the number of thresholds and non-independency of samples in two examples (using artificial data and EEG data). Consequently alternative approaches are presented, which overcome these methodological issues

    Delayed onset of vocal recognition in Australian sea lion pups (Neophoca cinerea)

    No full text
    In pinnipeds, maternal care strategies and colony density may influence a species' individual recognition system. We examined the onset of vocal recognition of mothers by Australian sea lion pups (Neophoca cinerea). At 2 months of age, pups responded significantly more to the calls of their own mothers than alien female calls demonstrating a finely tuned recognition system. However, newborn pups did not respond differentially to the calls of their mother from alien female calls suggesting that vocal recognition had not yet developed or is not yet expressed. These findings are in stark contrast to other otariid species where pups learn their mother's voice before their first separation. Variance in colony density, pup movements, and natal site fidelity may have reduced selective pressures on call recognition in young sea lions, or alternatively, another sensory system may be used for recognition in the early stage of life.9 page(s

    Prognostic factors in intramedullary astrocytomas: a literature review

    No full text
    Astrocytomas affect a significant portion of patients with intramedullary tumors. These infiltratively growing tumors are treated by a variety of methods—biopsy and decompressive surgery, maximal safe resection, adjuvant oncological therapy. Also, numerous prognostic factors are reported in the literature. Better understanding of factors that influence prognosis may help in treatment planning with the goal of prolonging survival. We have thus undertaken an extensive literature review in order to define factors affecting prognosis. A total of 38 articles were studied. Only tumor grade was consistently reported as the major factor affecting prognosis. The influence of other clinical factors (age, gender, history length, functional status, tumor location or extent, syrinx or cyst presence) can be speculated upon, but cannot be assessed adequately from the available literature. For both low- and high-grade (HG) astrocytomas, maximal safe tumor resection should be the primary treatment objective but is often not feasible in contrast to other intramedullary and spinal neoplasms. Since the biological nature of spinal cord HG glioma is identical to that of the brain, the same treatment algorithm of maximal safe resection followed by concomitant radio- and chemotherapy would be sensible to implement
    corecore