21 research outputs found

    Selenium and Mercury in the Brazilian Amazon: Opposing Influences on Age-Related Cataracts

    Get PDF
    BACKGROUND: Age-related cataracts (ARCs) are an important cause of blindness in developing countries. Although antioxidants may be part of the body's defense to prevent ARC, environmental contaminants may contribute to cataractogenesis. In fish-eating populations of the lower Tapajos region, elevated exposure to mercury (Hg) has been reported, and blood levels of selenium (Se) range from normal to very high (> 1,000 mu g/L). OBJECTIVES: We examined ARCs in relation to these elements among adults (>= 40 years of age) from 12 riverside communities. METHODS: Participants (n = 211) provided blood samples and underwent an extensive ocular examination. Inductively coupled plasma mass spectrometry was used to assess Hg and Se in blood and plasma. RESULTS: One-third (n = 69; 32.7%) of the participants had ARC. Lower plasma Se (P-Se; < 25th percentile, 110 mu g/L) and higher blood Hg (B-Hg; >= 25th percentile, 25 mu g/L) were associated with a higher prevalence odds ratio (POR) of ARC [adjusted POR (95% confidence interval), 2.69 (1.11-6.56) and 4.45 (1.43-13.83), respectively]. Among participants with high P-Se, we observed a positive but nonsignificant association with high B-Hg exposure, whereas among those with low B-Hg, we observed no association for P-Se. However, compared with the optimum situation (high P-Se, low B-Hg), the POR for those with low P-Se and high B-Hg was 16.4 (3.0-87.9). This finding suggests a synergistic effect. CONCLUSION: Our results suggest that persons in this population with elevated Hg, the cataractogenic effects of Hg may be offset by Se. Because of the relatively small sample size and possible confounding by other dietary nutrients, additional studies with sufficient power to assess multiple nutrient and toxic interactions are required to confirm these findings.Canadian Institutes of Health Research (CIHR)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Canadian Natural Sciences and Engineering Council (NSERC)International Development Research Centre (IDRC) - Canad

    Mycobacteria Attenuate Nociceptive Responses by Formyl Peptide Receptor Triggered Opioid Peptide Release from Neutrophils

    Get PDF
    In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, β-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia

    Sertoli cells maintain leydig cell number and peritubular myoid cell activity in the adult mouse testis

    Get PDF
    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health

    Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition

    No full text
    The original publication is available at www.springerlink.comThe potential of three arbuscular mycorrhizal fungi (AMF) to enhance the production of antioxidants (rosmarinic and caffeic acids, RA and CA) was investigated in sweet basil (Ocimum basilicum). After adjusting phosphorus (P) nutrition so that P concentrations and yield were matched in AM and non-mycorrhizal (NM) plants we demonstrated that Glomus caledonium increased RA and CA production in the shoots. Glomus mosseae also increased shoot CA concentration in basil under similar conditions. Although higher P amendments to NM plants increased RA and CA concentrations, there was higher production of RA and CA in the shoots of AM plants, which was not solely due to better P nutrition. Therefore, AMF potentially represent an alternative way of promoting growth of this important medicinal herb, as natural ways of growing such crops are currently highly sought after in the herbal industry.J. -P. Toussaint, F. A. Smith and S. E. Smit
    corecore