75 research outputs found

    High-resolution imaging of human atherosclerotic carotid plaques with micro18F-FDG PET scanning exploring plaque vulnerability

    Get PDF
    FDG-PET can be used to identify vulnerable plaques in atherosclerotic disease. Clinical FDG-PET camera systems are restricted in terms of resolution for the visualization of detailed inflammation patterns in smaller vascular structures. The aim of the study is to evaluate the possible added value of a high-resolution microPET system in excised carotid plaques using FDG. In this study, 17 patients with planned carotid endarterectomy were included. Excised plaques were incubated in FDG and subsequently imaged with microPET. Macrophage presence in plaques was evaluated semi-quantitatively by immunohistochemistry. Plaque calcification was assessed additionally with CT and correlated to FDG uptake. Finally, FDG uptake and macrophage infiltration were compared with patient symptomatology. Heterogeneous distributions and variable intensities of FDG uptake were found within the plaques. A positive correlation between the distribution of macrophages and the FDG uptake (r = 0.68, P <.01) was found. A negative correlation was found between areas of calcifications and FDG uptake (r = -0.84, P <.001). Ratio FDG(max) values as well as degree of CD68 accumulation were significantly higher in CVA patients compared with TIA or amaurosis fugax patients (P <.05) and CVA patients compared with asymptomatic patients (P <.05). This ex vivo study demonstrates that excised carotid plaques can be visualized in detail using FDG microPET. Enhancement of clinical PET/CT resolution for similar imaging results in patients is needed

    Functional Complexity of the Axonal Growth Cone: A Proteomic Analysis

    Get PDF
    The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions

    124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice: preliminary results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of <sup>18</sup>F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized C<sub>H</sub>2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaC<sub>H</sub>2), radiolabeled with iodine-124 (<sup>124</sup>I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.</p> <p>Methods</p> <p>HuCC49deltaC<sub>H</sub>2 was radiolabeled with <sup>124</sup>I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of <sup>18</sup>F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.</p> <p>Results</p> <p>At approximately 1 hour after i.v. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, <sup>18</sup>F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.</p> <p>Conclusions</p> <p>On microPET imaging, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while <sup>18</sup>F-FDG failed to demonstrate this. The antigen-directed and cancer-specific <sup>124</sup>I-radiolabled anti-TAG-72 monoclonal antibody conjugate, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.</p

    Методология синтеза архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки

    Get PDF
    Предложен подход к проектированию архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки в реальном времени, основанный на классификации решаемых функциональных задач на основе методов кластерного анализа и выбранного множества признаков подобия. Разработанный подход позволяет из множества функций системы выделить подобные (по определенным признакам) и объединить их в архитектурные компоненты (унифицированные функциональные модули).Запропоновано підхід до проектування архітектури центру обробки інформації автоматизованої системи моніторингу середовища в реальному часі, що заснований на класифікації функціональних задач на підставі методів кластерного аналізу і обраної множини ознак схожості. Розроблений підхід дозволяє вибрати із множини функцій системи схожі (за певними ознаками) і поєднати їх в архітектурні компоненти (уніфіковані функціональні модулі).The approach to designing architecture of the information processing complex of the automated real time conditions monitoring system based on classification of functional tasks on the basis of methods of cluster analysis and the chosen set of similarity attributes is offered. The developed approach allows to allocate from a set of functions the systems similar (on certain attributes) and to unite them in architectural components (unified functional modules)

    Combined application of 18

    No full text

    Evaluation of 68

    No full text

    WebFlow: A Software Package for High-Throughput Analysis of Flow Cytometry Data

    No full text
    Flow cytometry has emerged as a powerful tool for quantitative, single-cell analysis of both surface markers and intracellular antigens, including phosphoproteins and kinase signaling cascades, with the flexibility to process hundreds of samples in multiwell plate format. Quantitative flow cytometric analysis is being applied in many areas of biology, from the study of immunology in animal models or human patients to high-content drug screening of pharmacologically active compounds. However, these experiments generate thousands of data points per sample, each with multiple measured parameters, leading to data management and analysis challenges. We developed WebFlow (http://webflow.stanford.edu), a web server-based software package to manage, analyze, and visualize data from flow cytometry experiments. WebFlow is accessible via standard web browsers and does not require users to install software on their personal computers. The software enables plate-based annotation of large data sets, which provides the basis for exploratory data analysis tools and rapid visualization of multiple different parameters. These tools include custom user-defined statistics to normalize data to other wells or other channels, as well as interactive, user-selectable heat maps for viewing the underlying single-cell data. The web-based approach of WebFlow allows for sharing of data with collaborators or the general public. WebFlow provides a novel platform for quantitative analysis of flow cytometric data from high-throughput drug screening or disease profiling experiments
    corecore