148 research outputs found
Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease
Biomarkers are becoming increasingly important in the clinical management of complex diseases, yet our ability to discover new biomarkers remains limited by our dependence on endogenous molecules. Here we describe the development of exogenously administered 'synthetic biomarkers' composed of mass-encoded peptides conjugated to nanoparticles that leverage intrinsic features of human disease and physiology for noninvasive urinary monitoring. These protease-sensitive agents perform three functions in vivo: they target sites of disease, sample dysregulated protease activities and emit mass-encoded reporters into host urine for multiplexed detection by mass spectrometry. Using mouse models of liver fibrosis and cancer, we show that these agents can noninvasively monitor liver fibrosis and resolution without the need for invasive core biopsies and substantially improve early detection of cancer compared with current clinically used blood biomarkers. This approach of engineering synthetic biomarkers for multiplexed urinary monitoring should be broadly amenable to additional pathophysiological processes and point-of-care diagnostics.National Institutes of Health (U.S.) (Bioengineering Research Partnership R01 CA124427)Kathy and Curt Marble Cancer Research FundNational Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (F32CA159496-01
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Murine leukemia virus RNA dimerization is coupled to transcription and splicing processes
Most of the cell biological aspects of retroviral genome dimerization remain unknown. Murine leukemia virus (MLV) constitutes a useful model to study when and where dimerization occurs within the cell. For instance, MLV produces a subgenomic RNA (called SD') that is co-packaged with the genomic RNA predominantly as FLSD' heterodimers. This SD' RNA is generated by splicing of the genomic RNA and also by direct transcription of a splice-associated retroelement of MLV (SDARE). We took advantage of these two SD' origins to study the effects of transcription and splicing events on RNA dimerization. Using genetic approaches coupled to capture of RNA heterodimer in virions, we determined heterodimerization frequencies in different cellular contexts. Several cell lines were stably established in which SD' RNA was produced by either splicing or transcription from SDARE. Moreover, SDARE was integrated into the host chromosome either concomitantly or sequentially with the genomic provirus. Our results showed that transcribed genomic and SD' RNAs preferentially formed heterodimers when their respective proviruses were integrated together. In contrast, heterodimerization was strongly affected when the two proviruses were integrated independently. Finally, dimerization was enhanced when the transcription sites were expected to be physically close. For the first time, we report that splicing and RNA dimerization appear to be coupled. Indeed, when the RNAs underwent splicing, the FLSD' dimerization reached a frequency similar to co-transcriptional heterodimerization. Altogether, our results indicate that randomness of heterodimerization increases when RNAs are co-expressed during either transcription or splicing. Our results strongly support the notion that dimerization occurs in the nucleus, at or near the transcription and splicing sites, at areas of high viral RNA concentration
Anal and oral human papillomavirus (HPV) infection in HIV-infected subjects in northern Italy: a longitudinal cohort study among men who have sex with men
<p>Abstract</p> <p>Background</p> <p>A study including 166 subjects was performed to investigate the frequency and persistence over a 6-month interval of concurrent oral and anal Human Papillomavirus (HPV) infections in Human Immunodeficiency Virus (HIV)-infected men who have sex with men (MSM).</p> <p>Methods</p> <p>Patients with no previously documented HPV-related anogenital lesion/disease were recruited to participate in a longitudinal study. Polymerase chain reaction (PCR) was performed to detect HPV from oral and anal swabs and to detect Human Herpes Virus 8 (HHV-8) DNA in saliva on 2 separate specimen series, one collected at baseline and the other collected 6 months later. A multivariate logistic analysis was performed using anal HPV infection as the dependent variable versus a set of covariates: age, HIV plasma viral load, CD4+ count, hepatitis B virus (HBV) serology, hepatitis C virus (HCV) serology, syphilis serology and HHV-8 viral shedding. A stepwise elimination of covariates with a p-value > 0.1 was performed.</p> <p>Results</p> <p>The overall prevalence of HPV did not vary significantly between the baseline and the follow-up, either in the oral (20.1 and 21.3%, respectively) or the anal specimens (88.6 and 86.3%). The prevalence of high-risk (HR) genotypes among the HPV-positive specimens was similar in the oral and anal infections (mean values 24.3% and 20.9%). Among 68 patients with either a HR, low-risk (LR) or undetermined genotype at baseline, 75% had persistent HPV and the persistence rates were 71.4% in HR infections and 76.7% in LR infections. There was a lack of genotype concordance between oral and anal HPV samples. The prevalence of HR HPV in anus appeared to be higher in the younger patients, peaking (> 25%) in the 43-50 years age group. A decrease of the high level of anal prevalence of all genotypes of HPV in the patients > 50 years was evident. HHV-8 oral shedding was positively related to HPV anal infection (p = 0.0046). A significant correlation was found between the persistence of HHV-8 shedding and HIV viral load by logistic bivariate analysis (Odds Ratio of HHV-8 persistence for 1-log increase of HIV viral load = 1.725 ± 0.397, p = 0.018).</p> <p>Conclusions</p> <p>A high prevalence of HPV infection was found in our cohort of HIV-infected MSM, with a negative correlation between anal HPV infection and CD4 cell count.</p
Alcohol reversibly disrupts TNF-α/TACE interactions in the cell membrane
BACKGROUND: Alcohol abuse has long been known to adversely affect innate and adaptive immune responses and pre-dispose to infections. One cellular mechanism responsible for this effect is alcohol-induced suppression of TNF-α (TNF) by mononuclear phagocytes. We have previously shown that alcohol in part inhibits TNF-α processing by TNF converting enzyme (TACE) in human monocytes. We hypothesized that the chain length of the alcohol is critical for post-transcriptional suppression of TNF secretion. METHODS: Due to the complex transcriptional and post-transcriptional regulation of TNF in macrophages, to specifically study TNF processing at the cell membrane we performed transient transfections of A549 cells with the TNF cDNA driven by the heterologous CMV promoter. TNF/TACE interactions at the cell surface were assessed using fluorescent resonance energy transfer (FRET) microscopy. RESULTS: The single carbon alcohol, methanol suppressed neither TNF secretion nor FRET efficiency between TNF and TACE. However, 2, 3, and 4 carbon alcohols were potent suppressors of TNF processing and FRET efficiency. The effect of ethanol, a 2-carbon alcohol was reversible. CONCLUSION: These data show that inhibition of TNF-α processing by acute ethanol is a direct affect of ethanol on the cell membrane and is reversible upon cessation or metabolism
Heat stress of gilts around farrowing causes oxygen insufficiency in the umbilical cord and reduces piglet survival
Late gestating sows are susceptible to high ambient temperatures, possibly causing farrowing complications and reducing piglet survival. This experiment aimed to quantify in the days leading up to farrowing the impact of sow heat stress (HS) on farrowing physiology and survival of the piglets. Pregnant primiparous sows (gilts) were allocated to either thermoneutral control (CON, n = 8; constant 20 °C) or cyclical HS conditions (n = 8; 0900 h to 1700 h, 30 °C; 1700 h to 0900 h, 28 °C) from d 110 of gestation until farrowing completion. Gilt respiration rate, skin temperature and rectal temperature were recorded daily, and farrowing duration was quantified by video analyses. Blood samples were collected from the piglet umbilical vein at birth. At 48 h of age, piglet growth was quantified by morphometric analyses. The thermal exposure model induced HS and respiratory alkalosis in the gilts, as indicated by increased respiration rate, rectal temperature, skin temperature (all P < 0.001), plasma cortisol (P = 0.01) and blood pH (P < 0.001). Heat-stressed gilts took longer to start expelling placentae (P = 0.003), although the active farrowing duration was not significantly different between treatments. Stillbirth rates were higher in the HS group (P < 0.001), with surviving piglets at birth having lower umbilical vein partial pressure of oxygen (P = 0.04), oxygen saturation rate (P = 0.03) and tending to have increased lactate concentrations (P = 0.07). At birth, piglet skin meconium staining scores were greater in the HS group (P = 0.022). At 48 h of age, piglets from the HS group had reduced small intestinal length (P = 0.02), reduced jejunal crypt depth (P = 0.02) and lighter absolute brain weight (P = 0.001). In contrast, piglet BW, growth rate, relative organ weight and small intestinal mucosal barrier function did not change between treatments. Collectively, these findings demonstrated gilt HS during late gestation caused farrowing complications and reduced the umbilical oxygen supply to the piglets at parturition, leading to increased risks of piglet stillbirth with implications on impaired neonatal survivability and development
A Platform-Independent Method for Detecting Errors in Metagenomic Sequencing Data: DRISEE
We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation), to assess sequencing quality (alternatively referred to as “noise” or “error”) within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample) error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred). Here, DRISEE is applied to (non amplicon) data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs), a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms
Prediction of Co-Receptor Usage of HIV-1 from Genotype
Human Immunodeficiency Virus 1 uses for entry into host cells a receptor (CD4) and one of two co-receptors (CCR5 or CXCR4). Recently, a new class of antiretroviral drugs has entered clinical practice that specifically bind to the co-receptor CCR5, and thus inhibit virus entry. Accurate prediction of the co-receptor used by the virus in the patient is important as it allows for personalized selection of effective drugs and prognosis of disease progression. We have investigated whether it is possible to predict co-receptor usage accurately by analyzing the amino acid sequence of the main determinant of co-receptor usage, i.e., the third variable loop V3 of the gp120 protein. We developed a two-level machine learning approach that in the first level considers two different properties important for protein-protein binding derived from structural models of V3 and V3 sequences. The second level combines the two predictions of the first level. The two-level method predicts usage of CXCR4 co-receptor for new V3 sequences within seconds, with an area under the ROC curve of 0.937±0.004. Moreover, it is relatively robust against insertions and deletions, which frequently occur in V3. The approach could help clinicians to find optimal personalized treatments, and it offers new insights into the molecular basis of co-receptor usage. For instance, it quantifies the importance for co-receptor usage of a pocket that probably is responsible for binding sulfated tyrosine
Soluble perlecan domain i enhances vascular endothelial growth factor-165 activity and receptor phosphorylation in human bone marrow endothelial cells
<p>Abstract</p> <p>Background</p> <p>Immobilized recombinant perlecan domain I (PlnDI) binds and modulates the activity of heparin-binding growth factors, <it>in vitro</it>. However, activities for PlnDI, in solution, have not been reported. In this study, we assessed the ability of soluble forms to modulate vascular endothelial growth factor-165 (VEGF<sub>165</sub>) enhanced capillary tube-like formation, and VEGF receptor-2 phosphorylation of human bone marrow endothelial cells, <it>in vitro</it>.</p> <p>Results</p> <p>In solution, PlnDI binds VEGF<sub>165 </sub>in a heparan sulfate and pH dependent manner. Capillary tube-like formation is enhanced by exogenous PlnDI; however, PlnDI/VEGF<sub>165 </sub>mixtures combine to enhance formation beyond that stimulated by either PlnDI or VEGF<sub>165 </sub>alone. PlnDI also stimulates VEGF receptor-2 phosphorylation, and mixtures of PlnDI/VEGF<sub>165 </sub>reduce the time required for peak VEGF receptor-2 phosphorylation (Tyr-951), and increase Akt phosphorylation. PlnDI binds both immobilized neuropilin-1 and VEGF receptor-2, but has a greater affinity for neuropilin-1. PlnDI binding to neuropilin-1, but not to VEGF receptor-2 is dependent upon the heparan sulfate chains adorning PlnDI. Interestingly, the presence of VEGF<sub>165 </sub>but not VEGF<sub>121 </sub>significantly enhances PlnDI binding to Neuropilin-1 and VEGF receptor-2.</p> <p>Conclusions</p> <p>Our observations suggest soluble forms of PlnDI are biologically active. Moreover, PlnDI heparan sulfate chains alone or together with VEGF<sub>165 </sub>can enhance VEGFR-2 signaling and angiogenic events, <it>in vitro</it>. We propose PlnDI liberated during basement membrane or extracellular matrix turnover may have similar activities, <it>in vivo</it>.</p
Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study
Background: Serum neurofilament light chain (sNfL) is a biomarker of neuronal damage that is used not only to monitor disease activity and response to drugs and to prognosticate disease course in people with multiple sclerosis on the group level. The absence of representative reference values to correct for physiological age-dependent increases in sNfL has limited the diagnostic use of this biomarker at an individual level. We aimed to assess the applicability of sNfL for identification of people at risk for future disease activity by establishing a reference database to derive reference values corrected for age and body-mass index (BMI). Furthermore, we used the reference database to test the suitability of sNfL as an endpoint for group-level comparison of effectiveness across disease-modifying therapies. Methods: For derivation of a reference database of sNfL values, a control group was created, comprising participants with no evidence of CNS disease taking part in four cohort studies in Europe and North America. We modelled the distribution of sNfL concentrations in function of physiological age-related increase and BMI-dependent modulation, to derive percentile and Z score values from this reference database, via a generalised additive model for location, scale, and shape. We tested the reference database in participants with multiple sclerosis in the Swiss Multiple Sclerosis Cohort (SMSC). We compared the association of sNfL Z scores with clinical and MRI characteristics recorded longitudinally to ascertain their respective disease prognostic capacity. We validated these findings in an independent sample of individuals with multiple sclerosis who were followed up in the Swedish Multiple Sclerosis registry. Findings: We obtained 10 133 blood samples from 5390 people (median samples per patient 1 [IQR 1–2] in the control group). In the control group, sNfL concentrations rose exponentially with age and at a steeper increased rate after approximately 50 years of age. We obtained 7769 samples from 1313 people (median samples per person 6·0 [IQR 3·0–8·0]). In people with multiple sclerosis from the SMSC, sNfL percentiles and Z scores indicated a gradually increased risk for future acute (eg, relapse and lesion formation) and chronic (disability worsening) disease activity. A sNfL Z score above 1·5 was associated with an increased risk of future clinical or MRI disease activity in all people with multiple sclerosis (odds ratio 3·15, 95% CI 2·35–4·23; p<0·0001) and in people considered stable with no evidence of disease activity (2·66, 1·08–6·55; p=0·034). Increased Z scores outperformed absolute raw sNfL cutoff values for diagnostic accuracy. At the group level, the longitudinal course of sNfL Z score values in people with multiple sclerosis from the SMSC decreased to those seen in the control group with use of monoclonal antibodies (ie, alemtuzumab, natalizumab, ocrelizumab, and rituximab) and, to a lesser extent, oral therapies (ie, dimethyl fumarate, fingolimod, siponimod, and teriflunomide). However, longitudinal sNfL Z scores remained elevated with platform compounds (interferons and glatiramer acetate; p<0·0001 for the interaction term between treatment category and treatment duration). Results were fully supported in the validation cohort (n=4341) from the Swedish Multiple Sclerosis registry. Interpretation: The use of sNfL percentiles and Z scores allows for identification of individual people with multiple sclerosis at risk for a detrimental disease course and suboptimal therapy response beyond clinical and MRI measures, specifically in people with disease activity-free status. Additionally, sNfL might be used as an endpoint for comparing effectiveness across drug classes in pragmatic trials. Funding: Swiss National Science Foundation, Progressive Multiple Sclerosis Alliance, Biogen, Celgene, Novartis, Roche
- …
