50 research outputs found
Defects in death-inducing signalling complex formation prevent JNK activation and Fas-mediated apoptosis in DU 145 prostate carcinoma cells
Androgen-independent prostate carcinomas are resistant to chemotherapy and cell lines derived from androgen-independent prostate carcinomas such as DU 145 cells are highly resistant to Fas-mediated apoptosis. The incubation of DU 145 cells with anti-Fas IgM agonistic antibody of Fas receptor fails to activate JNK, a stress kinase involved in regulating apoptosis. We have previously shown that JNK activation is sufficient and necessary to promote Fas-mediated apoptosis in DU 145 cells. We investigate the mechanisms by which JNK activation and apoptosis are abrogated. HSP27 is overexpressed in DU 145 cells and has previously been reported to sequester DAXX and prevent JNK activation in cells treated with anti-Fas IgM. However, we find no evidence that HSP27 interacts with DAXX in DU 145 cells. Instead, we find that FADD does not interact with caspase-8 and this results in defective death-inducing signalling complex formation following Fas receptor activation
Digital Genome-Wide ncRNA Expression, Including SnoRNAs, across 11 Human Tissues Using PolyA-Neutral Amplification
Non-coding RNAs (ncRNAs) are an essential class of molecular species that have been difficult to monitor on high throughput platforms due to frequent lack of polyadenylation. Using a polyadenylation-neutral amplification protocol and next-generation sequencing, we explore ncRNA expression in eleven human tissues. ncRNAs 7SL, U2, 7SK, and HBII-52 are expressed at levels far exceeding mRNAs. C/D and H/ACA box snoRNAs are associated with rRNA methylation and pseudouridylation, respectively: spleen expresses both, hypothalamus expresses mainly C/D box snoRNAs, and testes show enriched expression of both H/ACA box snoRNAs and RNA telomerase TERC. Within the snoRNA 14q cluster, 14q(I-6) is expressed at much higher levels than other cluster members. More reads align to mitochondrial than nuclear tRNAs. Many lincRNAs are actively transcribed, particularly those overlapping known ncRNAs. Within the Prader-Willi syndrome loci, the snoRNA HBII-85 (group I) cluster is highly expressed in hypothalamus, greater than in other tissues and greater than group II or III. Additionally, within the disease locus we find novel transcription across a 400,000 nt span in ovaries. This genome-wide polyA-neutral expression compendium demonstrates the richness of ncRNA expression, their high expression patterns, their function-specific expression patterns, and is publicly available
Hsp-27 expression at diagnosis predicts poor clinical outcome in prostate cancer independent of ETS-gene rearrangement
BACKGROUND: This study was performed to test the hypothesis that expression of small heat shock protein Hsp-27 is, at diagnosis, a reliable predictive biomarker of clinically aggressive prostate cancer. METHODS: A panel of tissue microarrays constructed from a well-characterised cohort of 553 men with conservatively managed prostate cancer was stained immunohistochemically to detect Hsp-27 protein. Hsp-27 expression was compared with a series of pathological and clinical parameters, including outcome. RESULTS: Hsp-27 staining was indicative of higher Gleason score (P7, the presence of Hsp-27 retained its power to independently predict poor clinical outcome (P<0.002). Higher levels of Hsp-27 staining were almost entirely restricted to cancers lacking ERG rearrangements (chi2 trend=31.4, P<0.001), although this distribution did not have prognostic significance. INTERPRETATION: This study has confirmed that, in prostate cancers managed conservatively over a period of more than 15 years, expression of Hsp-27 is an accurate and independent predictive biomarker of aggressive disease with poor clinical outcome (P<0.001). These findings suggest that apoptotic and cell-migration pathways modulated by Hsp-27 may contain targets susceptible to the development of biologically appropriate chemotherapeutic agents that are likely to prove effective in treating aggressive prostate cancers
Deficiency of Huntingtin Has Pleiotropic Effects in the Social Amoeba Dictyostelium discoideum
Huntingtin is a large HEAT repeat protein first identified in humans, where a polyglutamine tract expansion near the amino terminus causes a gain-of-function mechanism that leads to selective neuronal loss in Huntington's disease (HD). Genetic evidence in humans and knock-in mouse models suggests that this gain-of-function involves an increase or deregulation of some aspect of huntingtin's normal function(s), which remains poorly understood. As huntingtin shows evolutionary conservation, a powerful approach to discovering its normal biochemical role(s) is to study the effects caused by its deficiency in a model organism with a short life-cycle that comprises both cellular and multicellular developmental stages. To facilitate studies aimed at detailed knowledge of huntingtin's normal function(s), we generated a null mutant of hd, the HD ortholog in Dictyostelium discoideum. Dictyostelium cells lacking endogenous huntingtin were viable but during development did not exhibit the typical polarized morphology of Dictyostelium cells, streamed poorly to form aggregates by accretion rather than chemotaxis, showed disorganized F-actin staining, exhibited extreme sensitivity to hypoosmotic stress, and failed to form EDTA-resistant cell–cell contacts. Surprisingly, chemotactic streaming could be rescued in the presence of the bivalent cations Ca2+ or Mg2+ but not pulses of cAMP. Although hd− cells completed development, it was delayed and proceeded asynchronously, producing small fruiting bodies with round, defective spores that germinated spontaneously within a glassy sorus. When developed as chimeras with wild-type cells, hd− cells failed to populate the pre-spore region of the slug. In Dictyostelium, huntingtin deficiency is compatible with survival of the organism but renders cells sensitive to low osmolarity, which produces pleiotropic cell autonomous defects that affect cAMP signaling and as a consequence development. Thus, Dictyostelium provides a novel haploid organism model for genetic, cell biological, and biochemical studies to delineate the functions of the HD protein
Sarcopenia: etiology, clinical consequences, intervention, and assessment
The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence