21 research outputs found

    QTL mapping for traits associated with stress neuroendocrine reactivity in rats

    No full text
    In the present study we searched for quantitative trait loci (QTLs) that affect neuroendocrine stress responses in a 20-min restraint stress paradigm using Brown–Norway (BN) and Wistar–Kyoto–Hyperactive (WKHA) rats. These strains differed in their hypothalamic–pituitary–adrenal axis (plasma ACTH and corticosterone levels, thymus, and adrenal weights) and in their renin–angiotensin–aldosterone system reactivity (plasma renin activity, aldosterone concentration). We performed a whole-genome scan on a F2 progeny derived from a WKHA × BN intercross, which led to the identification of several QTLs linked to plasma renin activity (Sr6, Sr8, Sr11, and Sr12 on chromosomes RNO2, 3, 19, and 8, respectively), plasma aldosterone concentration (Sr7 and Sr9 on RNO2 and 5, respectively), and thymus weight (Sr10, Sr13, and Srl4 on RNO5, 10, and 16, respectively). The type 1b angiotensin II receptor gene (Agtrlb) maps within the confidence intervals of QTLs on RNO2 linked to plasma renin activity (Sr6, highly significant; LOD = 5.0) and to plasma aldosterone level (Sr7, suggestive; LOD = 2.0). In vitro studies of angiotensin II–induced release of aldosterone by adrenal glomerulosa cells revealed a lower receptor potency (log EC50 = −8.16 ± 0.11 M) and efficiency (Emax = 453.3 ± 25.9 pg/3 × 104 cells/24 h) in BN than in WKHA (log EC50 = −10.66 ± 0.18 M; Emax = 573.1 ± 15.3 pg/3 × 104 cells/24 h). Moreover, differences in Agtr1b mRNA abundance and sequence reinforce the putative role of the Agtr1b gene in the differential plasma renin stress reactivity between the two rat strains.Bastien Llamas, Vincent Contesse, Véronique Guyonnet–Duperat, Hubert Vaudry, Pierre Mormède and Marie-Pierre Moisa

    Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions

    No full text
    International audienceSelenium is an essential micro-nutrient for animals, humans and microorganisms; it mainly enters food chains through plants. This study proposes to explore effect of inorganic Se forms on its uptake and accumulation in Zea mays. Zea mays was grown in a controlled-atmosphere chamber for 2 weeks in a hydroponic solution of low-concentration selenium (10 mu g/L (i.e.0.12 mu M) or 50 mu g/L (i.e. 0.63 mu M) of Se). For each concentration, four treatments were defined: control (without selenium), selenite alone, selenate alone and selenite and selenate mixed. At low concentrations, selenium did not affect the biomass production of Zea mays. However, for both concentrations, Se accumulation following a selenite-only treatment was always higher than with selenate-only. Moreover, in the selenate-only treatment, Se mainly accumulated in shoots whereas in the selenite-only treatment, Se was stocked more in the roots. Interactions between selenate and selenite were observed only at the higher concentration (0.63 mu M of selenium in the nutrient solution). Se form and concentration in the nutrient solution strongly influenced the absorption, allocation and metabolism of Se in Zea mays. Selenate seems to inhibit selenite absorption by the roots

    Generation of Monoclonal Antibody MS17-57 Targeting Secreted Alkaline Phosphatase Ectopically Expressed on the Surface of Gastrointestinal Cancer Cells

    Get PDF
    BACKGROUND: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is crucial for successful drug development. However, due to immune tolerance, making it difficult to generate antibodies using conventional approaches. METHODOLOGY/FINDINGS: Mixed four human gastric cancer (GC) cell lines were used as the immunogen in A/J mice; sixteen highly positive hybridoma colonies were selected via fluorescence-activated cell sorting-high throughput screening (FACS-HTS) using a total of 20,000 colonies in sixty-seven 96-well plates against live cells (mixed human GC cells versus human PBMC controls). MS17-57 and control commercial Alkaline Phosphatase (ALP) mAbs were used to confirm the target antigens (Ags), which were identified as ALPs expressed on the GC cell surface through a combination of western blot, immunoprecipitation and mass spectrometry (MS). MS identified the Ags recognized by MS17-57 to be two variants of a secreted ALP, PALP and IALP (Placental and intestinal ALP). These proteins belong to a hydrolase enzyme family responsible for removing phosphate groups from many types of molecules. Immunofluorescence staining using MS17-57 demonstrated higher staining of gastrointestinal (GI) cancer tissues compared to normal GI tissues (P<0.03), and confirmed binding of MS17-57 to be restricted to a functional epitope expressed on the cancer cell surface. Proliferation assays using the PALP/IALP-expressing GC cell lines demonstrated that MS17-57 inhibited cell growth by 32±8%. Transwell cell migration assays documented that MS17-57 can inhibit PALP/IALP-expressing GI cancer cell migration by 25±5%. MS17-57 mAb inhibited tumor growth in nude mice. CONCLUSIONS: Our findings indicate that PALP and IALP can be ectopically expressed on extracellular matrix of GI cancers, and that MS17-57 directed against PALP/IALP can inhibit GI cancer cells growth and migration in vitro and in vivo. This investigation provides an example of identification of cancer biomarkers representing promising therapeutic targets using mAb generated through a novel HTS technology
    corecore