13 research outputs found

    The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats

    Get PDF
    The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38–297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes

    Mosaic Origins of a Complex Chimeric Mitochondrial Gene in Silene vulgaris

    Get PDF
    Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species

    Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean

    No full text
    The recombination and copy number shifting activities of the plant mitochondrial genome are widely documented across plant genera, but these genome processes have not been as well examined with regard to their roles in plant evolution. Because of the extensive plant collections of Phaseolus spp and the degree to which cytoplasmic male sterility (cms) has been characterized in the common bean, this system would be valuable for investigating mitochondrial genome dynamics in natural populations. We have used the cms-associated sequence pvs-orf239 as a mitochondrial genetic marker for these studies and have demonstrated its universal presence throughout a diversity of undomesticated Phaseolus lines. Within these populations, the pvs-orf239 sequence is present in high copy number in approximately 10% of the lines, but substoichiometric in all others. This mitochondrial sequence, derived apparently by at least two recombination events, is well conserved with two point mutations identified that are both apparently silent with regard to the sterility phenotype. A putative progenitor sequence was identified in Phaseolus glabelus in substoichiometric levels, suggesting that the present-day pvs-orf239 sequence was likely introduced substoichiometrically. Copy number shifting within the mitochondrial genome results in a 1000- to 2000-fold change, so that substoichiometric forms are estimated at less than one copy per every 100 cells. On the basis of PCR analysis of root tips, we postulate that a mitochondrial "transmitted form" resides within the meristem to assure transmission of a complete genetic complement to progeny
    corecore