533 research outputs found

    Lorentz symmetry breaking in the noncommutative Wess-Zumino model: One loop corrections

    Full text link
    In this paper we deal with the issue of Lorentz symmetry breaking in quantum field theories formulated in a non-commutative space-time. We show that, unlike in some recente analysis of quantum gravity effects, supersymmetry does not protect the theory from the large Lorentz violating effects arising from the loop corrections. We take advantage of the non-commutative Wess-Zumino model to illustrate this point.Comment: 9 pages, revtex4. Corrected references. Version published in PR

    Newton's law in an effective non commutative space-time

    Full text link
    The Newtonian Potential is computed exactly in a theory that is fundamentally Non Commutative in the space-time coordinates. When the dispersion for the distribution of the source is minimal (i.e. it is equal to the non commutative parameter θ\theta), the behavior for large and small distances is analyzed.Comment: 5 page

    On the propagation of semiclassical Wigner functions

    Full text link
    We establish the difference between the propagation of semiclassical Wigner functions and classical Liouville propagation. First we re-discuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centered on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.Comment: 9 pages, 1 figure. To appear in J. Phys. A. This version matches the one set to print and differs from the previous one (07 Nov 2001) by the addition of two references, a few extra words of explanation and an augmented figure captio

    Physical Wigner functions

    Get PDF
    In spite of their potential usefulness, the characterizations of Wigner functions for Bose and Fermi statistics given by O'Connell and Wigner himself almost thirty years ago has drawn little attention. With an eye towards applications in quantum chemistry, we revisit and reformulate them in a more convenient way.Comment: Latex, 10 page

    Quantum deformation of the Dirac bracket

    Full text link
    The quantum deformation of the Poisson bracket is the Moyal bracket. We construct quantum deformation of the Dirac bracket for systems which admit global symplectic basis for constraint functions. Equivalently, it can be considered as an extension of the Moyal bracket to second-class constraints systems and to gauge-invariant systems which become second class when gauge-fixing conditions are imposed.Comment: 18 pages, REVTe

    On calculating the mean values of quantum observables in the optical tomography representation

    Full text link
    Given a density operator ρ^\hat \rho the optical tomography map defines a one-parameter set of probability distributions wρ^(X,ϕ), ϕ[0,2π),w_{\hat \rho}(X,\phi),\ \phi \in [0,2\pi), on the real line allowing to reconstruct ρ^\hat \rho . We introduce a dual map from the special class A\mathcal A of quantum observables a^\hat a to a special class of generalized functions a(X,ϕ)a(X,\phi) such that the mean value ρ^=Tr(ρ^a^)_{\hat \rho} =Tr(\hat \rho\hat a) is given by the formula ρ^=02π+wρ^(X,ϕ)a(X,ϕ)dXdϕ_{\hat \rho}= \int \limits_{0}^{2\pi}\int \limits_{-\infty}^{+\infty}w_{\hat \rho}(X,\phi)a(X,\phi)dXd\phi. The class A\mathcal A includes all the symmetrized polynomials of canonical variables q^\hat q and p^\hat p.Comment: 8 page

    Maximal Bell's Inequality Violation for Non Maximal Entanglement

    Full text link
    Bell's inequality violation (BIQV) for correlations of polarization is studied for a {\it product} state of two two-mode squeezed vacuum (TMSV) states. The violation allowed is shown to attain its maximal limit for all values of the squeezing parameter, ζ\zeta. We show via an explicit example that a state whose entanglement is not maximal allow maximal BIQV. The Wigner function of the state is non negative and the average value of either polarization is nil.Comment: 8 pages, latex, no figure

    The Moyal Bracket in the Coherent States framework

    Full text link
    The star product and Moyal bracket are introduced using the coherent states corresponding to quantum systems with non-linear spectra. Two kinds of coherent state are considered. The first kind is the set of Gazeau-Klauder coherent states and the second kind are constructed following the Perelomov-Klauder approach. The particular case of the harmonic oscillator is also discussed.Comment: 13 page

    Noncommutative Quantum Cosmology

    Full text link
    We consider noncommutative quantum cosmology in the case of the low-energy string effective theory. Exacts solutions are found and compared with the commutative case.The Noncommutative quantum cosmology is considered in the case of the low-energy string effective theory. Exacts solutions are found and compared with the commutative case.Comment: Revtex4, 3 pages, 2 figures, to appear in Gen.Rel.Gra

    On the B\"acklund Transformation for the Moyal Korteweg-de Vries Hierarchy

    Full text link
    We study the B\"acklund symmetry for the Moyal Korteweg-de Vries (KdV) hierarchy based on the Kuperschmidt-Wilson Theorem associated with second Gelfand-Dickey structure with respect to the Moyal bracket, which generalizes the result of Adler for the ordinary KdV.Comment: 9 pages, Revte
    corecore