10 research outputs found
Shape in an Atom of Space: Exploring quantum geometry phenomenology
A phenomenology for the deep spatial geometry of loop quantum gravity is
introduced. In the context of a simple model, an atom of space, it is shown how
purely combinatorial structures can affect observations. The angle operator is
used to develop a model of angular corrections to local, continuum flat-space
3-geometries. The physical effects involve neither breaking of local Lorentz
invariance nor Planck scale suppression, but rather reply on only the
combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example
of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde
Simple model for quantum general relativity from loop quantum gravity
New progress in loop gravity has lead to a simple model of `general-covariant
quantum field theory'. I sum up the definition of the model in self-contained
form, in terms accessible to those outside the subfield. I emphasize its
formulation as a generalized topological quantum field theory with an infinite
number of degrees of freedom, and its relation to lattice theory. I list the
indications supporting the conjecture that the model is related to general
relativity and UV finite.Comment: 8 pages, 3 figure
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.