27 research outputs found

    Инновационная система обнаружения утечек и контроля активности трубопроводов

    Get PDF
    The article covers the problem of monitoring the pipelines system. The article considers the possibility of continuous monitoring the innovative system to detect leakage and pipelines activity control, in order to reduce the risk of accidents with environmental consequences as a result of disasters at geographically distributed objects.В статье рассмотрена возможность ведения непрерывного мониторинга инновационной системой обнаружения утечек и контроля активности трубопроводов с целью сократить риски возникновения аварийных ситуаций с экологическими последствиями в результате аварий на распределенных объектах. Описывается алгоритм работы системы мониторинга

    Topologically Massive Gravity and the AdS/CFT Correspondence

    Full text link
    We set up the AdS/CFT correspondence for topologically massive gravity (TMG) in three dimensions. The first step in this procedure is to determine the appropriate fall off conditions at infinity. These cannot be fixed a priori as they depend on the bulk theory under consideration and are derived by solving asymptotically the non-linear field equations. We discuss in detail the asymptotic structure of the field equations for TMG, showing that it contains leading and subleading logarithms, determine the map between bulk fields and CFT operators, obtain the appropriate counterterms needed for holographic renormalization and compute holographically one- and two-point functions at and away from the 'chiral point' (mu = 1). The 2-point functions at the chiral point are those of a logarithmic CFT (LCFT) with c_L = 0, c_R = 3l/G_N and b = -3l/G_N, where b is a parameter characterizing different c = 0 LCFTs. The bulk correlators away from the chiral point (mu \neq 1) smoothly limit to the LCFT ones as mu \to 1. Away from the chiral point, the CFT contains a state of negative norm and the expectation value of the energy momentum tensor in that state is also negative, reflecting a corresponding bulk instability due to negative energy modes.Comment: 54 pages, v2: added comments and reference

    True substrates: The exceptional resolution and unexceptional preservation of deep time snapshots on bedding surfaces

    Get PDF
    Abstract: Rock outcrops of the sedimentary–stratigraphic record often reveal bedding planes that can be considered to be true substrates: preserved surfaces that demonstrably existed at the sediment–water or sediment–air interface at the time of deposition. These surfaces have high value as repositories of palaeoenvironmental information, revealing fossilized snapshots of microscale topography from deep time. Some true substrates are notable for their sedimentary, palaeontological and ichnological signatures that provide windows into key intervals of Earth history, but countless others occur routinely throughout the sedimentary–stratigraphic record. They frequently reveal patterns that are strikingly familiar from modern sedimentary environments, such as ripple marks, animal trackways, raindrop impressions or mudcracks: all phenomena that are apparently ephemeral in modern settings, and which form on recognizably human timescales. This paper sets out to explain why these short‐term, transient, small‐scale features are counter‐intuitively abundant within a 3.8 billion year‐long sedimentary–stratigraphic record that is known to be inherently time‐incomplete. True substrates are fundamentally related to a state of stasis in ancient sedimentation systems, and distinguishable from other types of bedding surfaces that formed from a dominance of states of deposition or erosion. Stasis is shown to play a key role in both their formation and preservation, rendering them faithful and valuable archives of palaeoenvironmental and temporal information. Further, the intersection between the time–length scale of their formative processes and outcrop expressions can be used to explain why they are so frequently encountered in outcrop investigations. Explaining true substrates as inevitable and unexceptional by‐products of the accrual of the sedimentary–stratigraphic record should shift perspectives on what can be understood about Earth history from field studies of the sedimentary–stratigraphic record. They should be recognized as providing high‐definition information about the mundane day to day operation of ancient environments, and critically assuage the argument that the incomplete sedimentary–stratigraphic record is unrepresentative of the geological past

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Measurement of vector boson production cross sections and their ratios using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    Abstract available from publisher's website

    Biomimetic trace metals improve bone regenerative properties of calcium phosphate bioceramics

    No full text
    The bone regenerative capacity of synthetic calcium phosphates (CaPs) can be enhanced through the enrichment with selected metal trace ions. However, defining the optimal elemental composition required for bone formation is challenging due to many possible concentrations and combinations of these elements. We hypothesized that the ideal elemental composition exists in the inorganic phase of the bone extracellular matrix (ECM). To study our hypothesis, we first obtained natural hydroxyapatite through the calcination of bovine bone, which was then investigated its reactivity with acidic phosphates to produce CaP cements. Bioceramic scaffolds fabricated using these cements were assessed for their composition, properties, and in vivo regenerative performance and compared with controls. We found that natural hydroxyapatite could react with phosphoric acid to produce CaP cements with biomimetic trace metals. These cements present significantly superior in vivo bone regenerative performance compared with cements prepared using synthetic apatite. In summary, this study opens new avenues for further advancements in the field of CaP bone biomaterials by introducing a simple approach to develop biomimetic CaPs. This work also sheds light on the role of the inorganic phase of bone and its composition in defining the regenerative properties of natural bone xenografts.Scopu
    corecore