4,584 research outputs found

    Magnetization reversals in a disk-shaped small magnet with an interface

    Full text link
    We consider a nanodisk possessing two coupled materials with different ferromagnetic exchange constant. The common border line of the two media passes at the disk center dividing the system exactly in two similar half-disks. The vortex core motion crossing the interface is investigated with a simple description based on a two-dimensional model which mimics a very thin real material with such a line defect. The main result of this study is that, depending on the magnetic coupling which connects the media, the vortex core can be dramatically and repeatedly flipped from up to down and vice versa by the interface. This phenomenon produces burst-like emission of spin waves each time the switching process takes place.Comment: 11 pages, 10 figure

    Conditions for free magnetic monopoles in nanoscale square arrays of dipolar spin ice

    Full text link
    We study a modified frustrated dipolar array recently proposed by M\"{o}ller and Moessner [Phys. Rev. Lett. \textbf{96}, 237202 (2006)], which is based on an array manufactured lithographically by Wang \emph{et al.} [Nature (London) \textbf{439}, 303 (2006)] and consists of introducing a height offset hh between islands (dipoles) pointing along the two different lattice directions. The ground-states and excitations are studied as a function of hh. We have found, in qualitative agreement with the results of M\"{o}ller and Moessner, that the ground-state changes for h>h1h>h_{1}, where h1=0.444ah_{1}= 0.444a (aa is the lattice parameter or distance between islands). In addition, the excitations above the ground-state behave like magnetic poles but confined by a string, whose tension decreases as hh increases, in such a way that for h≈h1h\approx h_1 its value is around 20 times smaller than that for h=0h=0. The system exhibits an anisotropy in the sense that the string tension and magnetic charge depends significantly on the directions in which the monopoles are separated. In turn, the intensity of the magnetic charge abruptly changes when the monopoles are separated along the direction of the longest axis of the islands. Such a gap is attributed to the transition from the anti to the ferromagnetic ground-state when h=h1h=h_1.Comment: 6 pages, 7 figures. Published versio

    Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder

    Get PDF
    We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum S(k)∼1/kαS(k) \sim 1/k^{\alpha} with α>0\alpha > 0. Moura and Lyra [Phys. Rev. Lett. {\bf 81}, 3735 (1998)] predicted that this model supports a phase of delocalized states at the band center, separated from localized states by two mobility edges, provided α>2\alpha > 2. We find clear signatures of Bloch-like oscillations of an initial Gaussian wave packet between the two mobility edges and determine the bandwidth of extended states, in perfect agreement with the zero-field prediction.Comment: 4 pages, 5 figure

    Berry phases and zero-modes in toroidal topological insulator

    Full text link
    An effective Hamiltonian describing the surface states of a toroidal topological insulator is obtained, and it is shown to support both bound-states and charged zero-modes. Actually, the spin connection induced by the toroidal curvature can be viewed as an position-dependent effective vector potential, which ultimately yields the zero-modes whose wave-functions harmonically oscillate around the toroidal surface. In addition, two distinct Berry phases are predicted to take place by the virtue of the toroidal topology.Comment: New version, accepted for publication in EPJB, 6 pages, 1 figur

    Ground-state configurations in ferromagnetic nanotori

    Full text link
    Magnetization ground states are studied in toroidal nanomagnets. The energetics associated to the ferromagnetic, vortex and onion-like configurations are explicitly computed. The analysis reveals that the vortex appears to be the most prominent of such states, minimizing total energy in every torus with internal radius r≳10 nmr\gtrsim10\,{\rm nm} (for Permalloy). For r≲10 nmr\lesssim10\,{\rm nm} the vortex remains the most favorable pattern whenever R/ℓex≳1.5R/\ell_{ex}\gtrsim1.5 (RR is the torus external radius and ℓex\ell_{ex} is the exchange length), being substituted by the ferromagnetic state whenever R/ℓex≲1.5R/\ell_{ex}\lesssim1.5.Comment: 16 pages, 9 figures, 3 apendices, Revtex forma

    A model for structural defects in nanomagnets

    Full text link
    A model for describing structural pointlike defects in nanoscaled ferromagnetic materials is presented. Its details are explicitly developed whenever interacting with a vortex-like state comprised in a thin nanodisk. Among others, our model yields results for the vortex equilibrium position under the influence of several defects along with an external magnetic field in good qualitative agreement with experiments. We also discuss how such defects may affect the vortex motion, like its gyrotropic oscillation and dynamical polarization reversal.Comment: 8 pages, resubmitted to Journal of Applied Physic
    • …
    corecore