4,076 research outputs found

    Output functions and fractal dimensions in dynamical systems

    Full text link
    We present a novel method for the calculation of the fractal dimension of boundaries in dynamical systems, which is in many cases many orders of magnitude more efficient than the uncertainty method. We call it the Output Function Evaluation (OFE) method. The OFE method is based on an efficient scheme for computing output functions, such as the escape time, on a one-dimensional portion of the phase space. We show analytically that the OFE method is much more efficient than the uncertainty method for boundaries with D<0.5D<0.5, where DD is the dimension of the intersection of the boundary with a one-dimensional manifold. We apply the OFE method to a scattering system, and compare it to the uncertainty method. We use the OFE method to study the behavior of the fractal dimension as the system's dynamics undergoes a topological transition.Comment: Uses REVTEX; to be published in Phys. Rev. Let

    Esgotamento sanitário nas áreas de maior concentração da agricultura familiar: situação da Região nordeste.

    Get PDF
    Este trabalho objetivou analisar as condições de esgotamento sanitário nas áreas de concentração da agricultura familiar na Região Nordeste do Brasil. A distribuição geográfica dos serviços de esgotamento sanitário não ocorre de forma homogênea. As áreas de maior concentração da agricultura familiar apresentam alta percentagem de domicílios rurais com esgotamento sanitário inadequado ou sem esgotamento, estando sujeitas a maiores riscos de incidência de doenças como cólera, diarréia, esquistossomose, dengue, filariose, amebíase, febre tifoide, etc., demandando a destinação de recursos e esforços para a melhoria das condições de esgotamento sanitário e das condições de vida da população rural.GEONORDESTE 2014. Trabalho publicado também no 7º Seminário de Iniciação Científica PIBIC/BIC Júnior, 2014, Sete Lagoas

    Nambu monopoles interacting with lattice defects in two-dimensional artificial square spin ice

    Full text link
    The interactions between an excitation (similar to a pair of Nambu monopoles) and a lattice defect are studied in an artificial two-dimensional square spin ice. This is done by considering a square array of islands containing only one island different from all others. This difference is incorporated in the magnetic moment (spin) of the "imperfect" island and several cases are studied, including the special situation in which this distinct spin is zero (vacancy). We have shown that the two extreme points of a malformed island behave like two opposite magnetic charges. Then, the effective interaction between a pair of Nambu monopoles with the deformed island is a problem involving four magnetic charges (two pairs of opposite poles) and a string. We also sketch the configuration of the field lines of these four charges to confirm this picture. The influence of the string on this interaction decays rapidly with the string distance from the defect.Comment: 7 pages, 13 figure

    Magnetic monopole and string excitations in a two-dimensional spin ice

    Full text link
    We study the magnetic excitations of a square lattice spin-ice recently produced in an artificial form, as an array of nanoscale magnets. Our analysis, based upon the dipolar interaction between the nanomagnetic islands, correctly reproduces the ground-state observed experimentally. In addition, we find magnetic monopole-like excitations effectively interacting by means of the usual Coulombic plus a linear confining potential, the latter being related to a string-like excitation binding the monopoles pairs, what indicates that the fractionalization of magnetic dipoles may not be so easy in two dimensions. These findings contrast this material with the three-dimensional analogue, where such monopoles experience only the Coulombic interaction. We discuss, however, two entropic effects that affect the monopole interactions: firstly, the string configurational entropy may loose the string tension and then, free magnetic monopoles should also be found in lower dimensional spin ices; secondly, in contrast to the string configurational entropy, an entropically driven Coulomb force, which increases with temperature, has the opposite effect of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009

    Graphene as an electronic membrane

    Full text link
    Experiments are finally revealing intricate facts about graphene which go beyond the ideal picture of relativistic Dirac fermions in pristine two dimensional (2D) space, two years after its first isolation. While observations of rippling added another dimension to the richness of the physics of graphene, scanning single electron transistor images displayed prevalent charge inhomogeneity. The importance of understanding these non-ideal aspects cannot be overstated both from the fundamental research interest since graphene is a unique arena for their interplay, and from the device applications interest since the quality control is a key to applications. We investigate the membrane aspect of graphene and its impact on the electronic properties. We show that curvature generates spatially varying electrochemical potential. Further we show that the charge inhomogeneity in turn stabilizes ripple formation.Comment: 6 pages, 11 figures. Updated version with new results about the re-hybridization of the electronic orbitals due to rippling of the graphene sheet. The re-hybridization adds the next-to-nearest neighbor hopping effect discussed in the previous version. New reference to recent STM experiments that give support to our theor

    Engineering a static verification tool for GPU kernels

    Get PDF
    We report on practical experiences over the last 2.5 years related to the engineering of GPUVerify, a static verification tool for OpenCL and CUDA GPU kernels, plotting the progress of GPUVerify from a prototype to a fully functional and relatively efficient analysis tool. Our hope is that this experience report will serve the verification community by helping to inform future tooling efforts. © 2014 Springer International Publishing

    Characterization of magnetron co-sputtered W-doped C-based films

    Get PDF
    In this paper, W-doped C-based coatings were deposited on steel and silicon substrates by RF magnetron sputtering, using W and C targets, varying the cathode power applied to the W target and the substrate bias. The chemical composition was varied by placing the substrates in a row facing the C and W targets. W content in the films increased from 1 to 2 at.% over the C target to ~ 73 at.% over the W target. The coatings with W content lower than ~ 12 at.% and ~ 23 at.%, for biased and unbiased conditions, respectively, showed X-ray amorphous structures, although carbide nanocrystals must exist as shown by the detection of the WC1-x phase in films with higher W content. C-rich films were very dense and developed a columnar morphology with increasing W content. An improvement in the hardness (from 10 GPa, up to 25 GPa) of the films was achieved either when negative substrate bias was used in the deposition, or when the WC1-x phase was detected by X-ray diffraction. The adhesion of the coatings is very low with spontaneous spallation of those deposited with negative substrate bias higher than 45 V. Varieties in cathode power (90 W or 120 W) applied to the W target showed no observable influence on the characteristics of the films.http://www.sciencedirect.com/science/article/B6TW0-4KXVCT6-6/1/a285b093ad366f2b40c4eb884a4442c
    corecore